Балка композиционной структуры Российский патент 2021 года по МПК E04C3/29 

Описание патента на изобретение RU2745288C1

Изобретение относится к строительству, а именно к балкам покрытий и перекрытий зданий и сооружений, к подкрановым балкам, работающим преимущественно в условиях изгиба.

Известна сталебетонная балка, состоящая из верхнего и нижнего поясов, стенок и опорных диафрагм, образующих замкнутый контур, заполненный бетоном. При этом стенки имеют криволинейную форму двоякой кривизны, расстояние между которыми уменьшается от верхнего пояса к нижнему. В стенках имеются отверстия и вырезы, которые расположены с переменным шагом по длине балки в соответствии с эпюрой сдвигающих напряжений. Стенки объединены предварительно напряженными стяжными шпильками (RU №2621247, Е04С 3/07, Е04С 3/293, 2017.06.01).

Недостатком такого технического решения является повышенная материалоемкость балки за счет неэффективного использования бетона по сечению сталебетонной балки вследствие заполнения бетоном всего внутреннего пространства между поясами и стенками балки, в том числе и в зонах их наименьшего взаимодействия.

Известна также сталежелезобетонная балка, включающая верхний и нижний пояса, стенку и бетон, расположенный в замкнутом контуре в верхней части сечения балки, имеет замкнутый контур для расположения бетона. Замкнутый контур образован верхним поясом и стенкой, состоящей из двух листов, которые в верхней части балки изогнуты наружу в соответствии с эпюрой нормальных сжимающих напряжений в сечениях балки. Верхние кромки листов стенки разнесены в горизонтальной плоскости и образуют по длине балки две кривые, соответствующие эпюре изгибающего момента в балке.

Верхние точки сопряжения листов стенки расположены на вертикальной кривой, соответствующей эпюре изгибающего момента в балке, а листы стенки объединены фиксаторами переменной длины, которые обеспечивают ей криволинейную форму по высоте и длине балки (RU №2627810, Е04С 3/293, Е04С 3/07, Е04В 1/30, 2017.08.11).

Недостатком такого конструктивного решения является повышенная материалоемкость балки за счет неэффективного использования бетона по сечению сталежелезобетонной балки, обусловленная заполнением бетоном всей внутренней области между поясами и стенками балки, в том числе и в зонах их наименьшего взаимодействия.

Наиболее близким техническим решением к заявленному является балка композиционной структуры, содержащая сжатый и растянутый пояса и стенку, причем стенка состоит из металлических листов, перпендикулярных плоскостям поясов и имеющих, по крайней мере, на части длины поперечное к продольной оси балки традиционное или переменное гофрирование, а образованные между металлическими листами полости на участках интенсивных поперечных сил заполнены бетоном, причем гофры на данных участках остаются постоянного по высоте стенки сечения (RU №2409728, Е04С 3/293, 20.01.2011).

Недостатком такого конструктивного решения является повышенная материалоемкость балки композиционной структуры, обусловленная тем, что композитный материал - бетон полностью заполняет полости, образованные металлическими листами в зонах его размещения по длине балки и соответственно распределен по всему ее поперечному сечению, а, как известно, эффективность совместной работы поясов, стенки балки с композитным материалом - бетоном снижается по мере удаления от зон их контакта, что приводит в удаленных от их контакта зонах композитного материала к существенному снижению влияния напряжений в композитном материале на напряженно-деформированное состояние стенок и поясов балки как по высоте сечения балки, так и по ее ширине, и, следовательно, к недоиспользованию влияния прочностных свойств композитного материала на несущую способность балки, что, как следствие, приводит к его неэффективному применению и в целом увеличивает материалоемкость балки композитной структуры.

Задача изобретения - снижение материалоемкости балки композиционной структуры за счет более эффективного распределения толщины композитного материала по ее сечениям и длине и повышение эксплуатационной надежности.

Технический результат достигается тем, что балка композиционной структуры, содержащая пояса и стенку из металлических листов, образующих полость, заполненную композитным материалом, внутри которого размещена жесткая полая оболочка, поперечные размеры которой переменны, при этом в каждом поперечном сечении по длине балки композиционной структуры толщина композитного материала между жесткой полой оболочкой, поясами и стенкой изменяется подобно очертанию эпюры приведенных нормальных напряжений от нагрузок в поясах и стенке, а в зонах их сопряжения - подобно очертанию эпюры суммарных приведенных нормальных напряжений.

Приведенные нормальные напряжения в поясах и стенке определяются в соответствии с зависимостью:

где σх - нормальные напряжения в поясах и стенке, направленные вдоль оси балки композиционной структуры, τxy - касательные в плоскости стенки.

Ширина зон сопряжения поясов и стенки определяются выражением:

где twi - толщина соответствующего пояса или стенки, Е - модуль упругости;

Ry - расчетное сопротивление материала соответствующей полки или стенки.

Сущность изобретения поясняется чертежами:

- фиг. 1 - общий вид балки композиционной структуры;

- фиг. 2 - поперечное сечение 1-1 на фиг. 1;

- фиг. 3 - поперечное сечение 2-2 на фиг. 1;

- фиг. 4 - поперечное сечение 3-3 на фиг. 1;

- фиг. 5 - поперечное сечение 4-4 на фиг. 1;

- фиг. 6 - схема формирования толщины слоя композитного материала, подобной эпюрам приведенных нормальных напряжений в сечении 1-1 на фиг. 1;

- фиг. 7 - схема формирования толщины слоя композитного материала, подобной эпюрам приведенных нормальных напряжений в сечении 2-2 на фиг. 1;

- фиг. 8 - схема формирования толщины слоя композитного материала, подобной эпюрам приведенных нормальных напряжений в сечении 3-3 на фиг. 1;

- фиг. 9 - схема формирования толщины слоя композитного материала, подобной эпюрам приведенных нормальных напряжений в сечении 4-4 на фиг. 1;

- фиг. 10 - схема формирования толщины композитного материала, в зонах сопряжения стенки и поясов балки композитной структуры подобной эпюрам суммарных приведенных нормальных напряжений в сечениях балки композиционной структуры;

- фиг. 11 - аксонометрическое представление размещения композитного материала по длине балки;

- фиг. 12 - аксонометрическое представление жесткой полой оболочки по длине балки.

Балка композиционной структуры 1 (фиг. 1) включает пояса 2 и стенку 3 из металлических листов 4, которые образуют полость в виде пустотного объема 5, заполненную композитным материалом 6 (например, бетоном, фибробетоном, дисперсно-армированным стеклопластиком, дисперсно-армированным углепластиком), при этом внутри композитного материала размещается жесткая полая оболочка 7 (фиг. 2-5, 11, 12), поперечные размеры которой переменны, в каждом поперечном сечении и по длине балки композиционной структуры 1, при этом толщина композитного материала 6, располагаемого между внешним контуром жесткой полой оболочки 7, полками 2 и стенкой 3 из металлических листов 4 изменяется подобно очертанию эпюры приведенных нормальных напряжений (фиг. 2-5, фиг. 6-9) от нагрузок в поясах 2 и стенке 3, а в зонах их сопряжения подобна очертанию суммарной эпюры этих напряжений (фиг. 10), при этом в полках 2 (σпр.п., фиг. 6-9) и стенке 3 (σпр.с., Фиг. 6-9), приведенные нормальные напряжения определяются в соответствии с зависимостью (1).

При действии на балку композиционной структуры 1 эксплуатационных нагрузок пояса 2, стенки 3 и находящийся внутри композитный материал 6 с жесткой полой оболочкой 7 деформируются совместно. Наибольший эффект от их совместной работы достигается в местах взаимного контакта поясов 2 и стенки 3 с композитным материалом 6 в зонах с наибольшими значениями совместных деформаций и соответствующих им напряжений, при этом по мере удаления от плоскостей контакта поясов 2, стенки 3 с композитным материалом 6 вглубь по его толщине эффект от совместной работы уменьшается. Наибольшие значения напряжений и деформаций в поясах 2 и стенке 3 определяются приведенными напряжениями, учитывающими совместное действие нормальных σх и касательных напряжений τху в соответствии с формулой (1) (Металлические конструкции. В 3 т. Т. 1. Элементы конструкций: Учеб. для строит. вузов / В.В. Горев, Б.Ю. Уваров, В.В. Филиппов и др.; под ред. В.В. Горева. - 3-е изд., стер. - М.: Высш. Шк., 2004 - 551 с. С. 201-202, рис. 5.5, 5.6).

Изменение толщины композитного материала 6, подобно очертанию эпюры приведенных нормальных напряжений (фиг. 6-9) как по длине балки, так и по ее сечению приводит с одной стороны к увеличению толщины композитного материала 6 в зонах с наибольшими напряжениями в поясах 2 и стенке 3 и ее снижению зонах с наименьшими напряжениями (фиг. 6-9), что позволяет снизить расход композитного материала и одновременно повысить эффективность его использования, это приводит к снижению материалоемкости балки композиционной структуры 1 в целом.

В местах сопряжения поясов 2 и стенки 3 взаимодействие с композитным материалом 6 определяется совместными деформациями и соответствующими приведенными напряжениями как в поясе 2 (σпр.п., фиг. 6-9), так и в стенке 3 (σпр.с., фиг. 6-9), поэтому назначение толщины слоя композитного материала 6 в этих зонах подобной очертанию суммарной эпюре приведенных нормальных напряжений (∑σпр.пр.спр.п., фиг. 10), позволят эффективно использовать композитный материал 6 по всей толщине его слоя.

Ширина зон их эффективного сопряжения (L1, L2, фиг. 10), на которых взаимное влияние приведенных нормальных напряжений в поясах 2 и стенке 3 является существенным, определяется выражением (2) (1. СП 16.13330.2017 Свод правил. Стальные конструкции. Актуализированная редакция СНиП II-23-81*. Дата введения 2017-08-28 п. 8.5.17; 2. Металлические конструкции. Общий курс: Учебник для вузов/Е.И. Беленя, В. А. Балдин, Г.С Ведеников и др.; Под общ. ред. Е.И. Беленя. - 6-е изд., перераб. и доп. - М.: Стройиздат, 1986 - 560 е., ил. с. 168-169, рис. 7.28).

Изменение толщины слоя композитного материала 6 подобно эпюре суммарных приведенных нормальных напряжений в пределах зон сопряжения (L1, L2, фиг. 10) позволяет исключить его неэффективное использование и, следовательно, снизить расход композитного материала 6 и балки композитной структуры 1 в целом.

Использование жесткой полой оболочки 7 позволяет за счет воздушной полости - пустотного объема уменьшать расход композитного материала 6 и исключить его размещение в областях неэффективного использования, а за счет полости снижать вес балки композитной структуры 1. Жесткая полая оболочка 7 обеспечивает эффективную внутреннюю форму композитного материала 6.

Несущая способность балки композиционной структуры 1 обеспечивается подбором механических характеристик: предела прочности, модуля деформации, адгезионных свойств и т.п. для композитного материала 6, марок стали для поясов 2, стенки 3, размеров поперечного сечения балки композиционной структуры 1, материала и толщины жесткой полой оболочки 7 и т.п.

Похожие патенты RU2745288C1

название год авторы номер документа
БАЛКА КОМПОЗИЦИОННОЙ СТРУКТУРЫ 2021
  • Егоров Владимир Викторович
  • Фёдоров Александр Михайлович
  • Абу-Хасан Махмуд
RU2771153C1
Сталебетонная балка 2016
  • Егоров Владимир Викторович
  • Веселов Виталий Владиславович
RU2621247C1
Сталебетонная балка 2016
  • Егоров Владимир Викторович
  • Веселов Виталий Владиславович
RU2627810C1
Сталежелезобетонная балка 2020
  • Веселов Виталий Владиславович
  • Егоров Владимир Викторович
RU2745287C1
БАЛКА КОМПОЗИЦИОННОЙ СТРУКТУРЫ С ГОФРИРОВАННЫМИ ЭЛЕМЕНТАМИ 2009
  • Рыбкин Иван Сергеевич
RU2409728C1
ГИБРИДНАЯ БАЛКА 2022
  • Талантова Клара Васильевна
  • Веселов Виталий Владиславович
  • Балаев Дмитрий Вячеславович
  • Фролова Елизавета Девендровна
RU2789683C1
Предварительно напряженная сталебетонная балка 2018
  • Веселов Виталий Владиславович
  • Абатурова Татьяна Дмитриевна
  • Копачева Мария Владимировна
RU2677188C1
Предварительно напряженная сталебетонная балка 2018
  • Веселов Виталий Владиславович
  • Абатурова Татьяна Дмитриевна
  • Копачева Мария Владимировна
RU2675002C1
КОМПОЗИТНЫЙ НЕСУЩИЙ ЭЛЕМЕНТ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 1997
  • Фридкин В.М.
  • Носарев А.В.
  • Кузменко Игорь Михайлович
  • Павлюк Сергей Кириллович
  • Семенов Алексей Валерьевич
  • Попковский Виктор Александрович
  • Филатенков Александр Алексеевич
RU2181406C2
БАЛКА ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИРОВАННОЙ СТЕНКОЙ 2016
  • Лукин Алексей Олегович
  • Ильдияров Евгений Викторович
  • Панфилов Денис Александрович
  • Суворов Александр Анатольевич
  • Алпатов Вадим Юрьевич
RU2629270C1

Иллюстрации к изобретению RU 2 745 288 C1

Реферат патента 2021 года Балка композиционной структуры

Изобретение относится к строительству, а именно к балкам покрытий и перекрытий зданий и сооружений. Технический результат – повышение эксплуатационной надежности. Балка композиционной структуры состоит из поясов, стенки из металлических листов, которые образуют полость, заполненную композитным материалом, при этом внутри композитного материала размещается жесткая полая оболочка, поперечные размеры которой переменны в каждом поперечном сечении по длине балки композиционной структуры. Толщина композитного материала, расположенной между жесткой полой оболочкой и металлическими листами, изменяется подобно очертанию эпюры приведенных нормальных напряжений от нагрузок в поясах и стенке, а в зонах их сопряжения подобна очертанию эпюры суммарных приведенных нормальных напряжений. 2 з.п. ф-лы, 12 ил.

Формула изобретения RU 2 745 288 C1

1. Балка композиционной структуры, содержащая пояса и стенку из металлических листов, образующих полость, заполненную композитным материалом, отличающаяся тем, что внутри композитного материала размещена жесткая полая оболочка, поперечные размеры которой переменны, при этом в каждом поперечном сечении по длине балки композиционной структуры толщина композитного материала между жесткой полой оболочкой, поясами и стенкой изменяется подобно очертанию эпюры приведенных нормальных напряжений от нагрузок в поясах и стенке, а в зонах их сопряжения - подобно очертанию эпюры суммарных приведенных нормальных напряжений.

2. Балка композиционной структуры по п. 1, отличающаяся тем, что приведенные нормальные напряжения в поясах и стенке определяются в соответствии с зависимостью:

где σх - нормальные напряжения в поясах и стенке, направленные вдоль оси балки композиционной структуры;

τху - касательные напряжения в плоскости стенки.

3. Балка композиционной структуры по п. 1, отличающаяся тем, что ширина зон сопряжения поясов и стенки определяется выражением:

где twi - толщина соответствующего пояса или стенки, Е - модуль упругости,

Ry - расчетное сопротивление материала соответствующей полки или стенки.

Документы, цитированные в отчете о поиске Патент 2021 года RU2745288C1

БАЛКА КОМПОЗИЦИОННОЙ СТРУКТУРЫ С ГОФРИРОВАННЫМИ ЭЛЕМЕНТАМИ 2009
  • Рыбкин Иван Сергеевич
RU2409728C1
Сталебетонная балка 2016
  • Егоров Владимир Викторович
  • Веселов Виталий Владиславович
RU2627810C1
ПРИБОР ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ В ПОТОКЕ НЕФТИ 0
SU176462A1
Строительный элемент с листовой арматурой 1977
  • Кикин Александр Иванович
  • Трулль Владимир Антонович
  • Санжаровский Рудольф Сергеевич
  • Курлеутов Эдуард Мухамедгазиевич
SU859571A1
WO 2011012974 A2, 03.02.2011.

RU 2 745 288 C1

Авторы

Егоров Владимир Викторович

Федоров Александр Михайлович

Даты

2021-03-23Публикация

2020-10-01Подача