Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям Российский патент 2021 года по МПК G01P1/00 

Описание патента на изобретение RU2746762C1

Изобретение относится к измерительной технике и может применяться в микромеханических акселерометрах, микрогироскопах, интегральных датчиков давления.

Известно устройство, где чувствительный элемент (ЧЭ) датчика, изготовленный из монокристаллического кремния и боросиликатного стекла, закреплен на основании при помощи клея-герметика. Причем клей-герметик наносится произвольно на всю площадь поверхностей или ее каких-то частей [1].

Недостатком данного устройства является то, что механические напряжение, возникающие в стеклянной подложке и кремниевом кристалле - маятнике с внешней рамкой приводят к значительным погрешностям микромеханического акселерометра. Так при производстве микромеханических акселерометров чувствительный элемент монтируется в корпусе совместно с электронным преобразователем. Причем простым приклеиванием поверхности ЧЭ к основанию корпуса с плоской поверхностью. Боросиликатное стекло, которое применяется для анодной сварки при изготовлении чувствительных элементов в частности для микромеханических акселерометров, имеет плохую теплопроводность по сравнению с кремнием. При воздействии температуры в стеклянной подложке генерируется относительно большое напряжение. Это относительно большое механическое напряжение приводит к погрешностям акселерометра, которое не могут быть компенсированы алгоритмически из-за временной зависимости переходного процесса. Другим недостатком является то, что наличие клея-герметика на стеклянной подложке, обращенной к приклеиваемой поверхности - основанию микромеханического акселерометра также создает напряжение. Такие напряжения зависят от температуры и влияют на чувствительность датчика и на смещение нулевого сигнала. Кроме того, область клеевого соединения должна быть достаточно большой, чтобы обеспечить прочность соединения от вибраций, ударов. А увеличение площади клеевого соединения повышает воздействие напряжений на чувствительный элемент датчика. Таким образом напряжения, вызванные разницей между коэффициентами теплового расширения кремния и боросиликатного стекла из которых изготовлен чувствительный элемент датчика, основания и клея- герметика увеличивают смещение нулевого сигнала акселерометра, а это уменьшает точность микромеханического акселерометра.

Известно устройство, где чувствительный элемент датчика закреплен на специальном пьедестале, сформированным заодно с основанием. Причем площадь пьедестала меньше чем площадь поверхности ЧЭ. В другом варианте - специальный пьедестал представляет собой отдельную деталь. В этом варианте вначале приклеивают к основанию пьедестал, а затем на него приклеивают ЧЭ [2].

Недостатком данного устройства является то, что невозможно обеспечить прочность соединения от вибраций, ударов. Уменьшение площади контакта частично снижает воздействие термомеханических напряжений. Однако под воздействием вибрации, ударов и термоциклов, которые присутствуют в реальных условиях такой вариант конструкции, влечет за собой неизбежный отказ датчика.

Известен чувствительный элемент микромеханического акселерометра, содержащий двухплечевой маятник из монокристаллического кремния, стеклянную обкладку и внешнюю рамку с площадками крепления к стеклянной обкладке, упругие торсионы, соединенные с маятником и внешней рамкой, ось симметрии инерционной массы совмещена с осью, проходящей через крестообразные торсионы. Площадки крепления расположены в непосредственной близости упругие торсионов. Внешняя рамка одновременно выполняет роль жесткого каркаса чувствительного элемента, при этом соединение чувствительного элемента с неподвижным основанием акселерометра осуществляется через обратную сторону стеклянной обкладки [3].

Анодное соединение стеклянной подложки с монокристаллическим кремниевым чувствительным элементом осуществляется при повышенной температуре. После остывания конструкции «стеклянная подложка-монокристаллический кремниевый двухплечевой маятник с внешней рамкой, соединенные через упругие торсионы» происходит частичная деформация внешней рамки чувствительного элемента. Эта деформация передается на упругие торсионы. Это существенным образом влияет на стабильность механических характеристик упругих торсионов.

Перемещение поверхности детали согласно формуле Буссинеска:

где у - перемещение поверхности; Е - модуль упругости; v - коэффициент Пуассона; Р - давление на контакт; r - расстояние от точки приложения сосредоточенной силы до заданного сечения; S - площадь контакта упоров.

Напряжение в j-месте стыка упругих подвесов и упоров:

где у0 - толщина упора.

Тогда чувствительность к контактным напряжениям будет:

или

возможные напряжения, возникающие при изменении температуры от точек крепления внешней рамки к упругим торсионам оценивается следующей зависимостью:

h - толщина внешней рамки.

Таким образом, чувствительность конструкции к контактным напряжениям определяется площадью контакта и удаленностью места заделки упругого подвеса от силового контакта.

Таким образом, недостатком известного устройства является нестабильность смещения нуля вследствие высокого уровня контактных напряжений, возникающих в местах фиксации площадок крепления к стеклянной подложки и передающихся на упругий торсион.

Другим недостатком известного устройства является высокая погрешность при воздействии положительных и отрицательных температур.

Так как чувствительный элемент закреплен на основании корпуса акселерометра, то возникающие напряжения от воздействия положительных или отрицательных температур передается от основания через стеклянную обкладку на внешнюю рамку и соответственно на упругие торсионы. Вследствие этого упругие торсионы деформируются, и в результате происходит смещение маятника при отсутствии воздействия ускорения. Таким образом, происходит температурное смещение нулевого сигнала, а это снижает точность акселерометра. Изменится также жесткость торсионов и, как следствие, уход крутизны преобразователя перемещений. Это также существенным образом снижает точность прибора.

Известен чувствительный элемент микромеханического акселерометра, содержащий двухплечевой маятник из монокристаллического кремния, стеклянную обкладку и внешнюю рамку с площадками крепления к стеклянной обкладке, упругие торсионы, соединенные с двухплечевым маятником и внешней рамкой, ось симметрии инерционной массы совмещена с осью, проходящей через упругие торсионы, внешняя рамка выполнена в виде упругодеформируемых балок, сформированных между площадками крепления к стеклянным обкладкам на внешней рамке и между упругими торсионам и площадками крепления к стеклянным обкладкам, дополнительно сформирована прокладка, закрепленная с обратной стороны к стеклянной обкладке через ножки, сформированные на прокладке, расположенные соосно с площадками крепления к стеклянной обкладке на внешней рамке, с другой стороны прокладки сформирована опора крепления к основанию, расположенная в центре симметрии прокладки и соединенная с ножками через жесткие растяжки [4].

Недостатками данного устройства является трудоемкость точного позиционирования дополнительной прокладки относительно конструкции двухплечевого маятника, соединенного с внешней рамкой, расположенных с другой стороны стеклянной обкладки. Таким образом, при установке на основание рассовмещение конструкции двухплечевого маятника и дополнительной прокладки, закрепленных на стеклянной обкладке с противоположных сторон при действии температурных факторов приводит деформации конструкции ЧЭ. Следовательно, напряженное состояние все-таки передается на упругие торсионы тем самым вызывая смещение нулевого сигнала. Другим недостатком является то, что такое закрепление приводит к удорожанию техпроцесса. Этот процесс требует дополнительных материальных затрат. Так как это отдельные кристаллы, сформированные в виде дополнительных прокладок для закрепления с обратной стороны стеклянной обкладки. Эти отдельные кристаллы, сформированные в виде дополнительных прокладок, изготавливаются отдельным техпроцессом на дополнительных пластинах. Кроме того, закрепление дополнительных прокладок с обратной стороны стеклянных обкладок требует очень высокой квалификации сборщика. Еще одним недостатком является анодное соединение структуры кремний - стекло - кремний. Так, трудно позиционировать электроды на такой структуре, а также подобрать режимы анодного соединения.

Задачей, на решение которой направлено изобретение, является увеличение точности и снижение трудоемкости.

Для достижения этого в микромеханическом акселерометре с низкой чувствительностью к термомеханическим воздействиям, содержащем двухплечевой маятник из монокристаллического кремния, стеклянную обкладку, внешнюю рамку с площадками крепления к стеклянной обкладке, соединенную с двухплечевым маятником через упругие торсионы, согласно изобретению, сформирована дополнительная опорная рамка, соединенная с внешней рамкой через жестки балки, причем жесткие балки сформированы во внешних углах внешней рамки и соединены с близлежащими внутренними углами дополнительной опорной рамки, при этом площадки крепления к стеклянной обкладке сформированы на дополнительной опорной рамки, в центре симметрии каждой из сторон дополнительной опорной рамки.

Признаком, отличающим предложенный датчик от известного является то, что сформирована дополнительная опорная рамка, соединенная с внешней рамкой через жесткие балки, причем жесткие балки сформированы во внешних углах внешней рамки и соединены с близлежащими внутренними углами дополнительной опорной рамки, при этом площадки крепления к стеклянной обкладке сформированы на дополнительной опорной рамке, в центре симметрии каждой из сторон дополнительной опорной рамки. Сформированная дополнительная опорная рамка выполняет функцию буфера от воздействия напряжений, возникающих от неподвижного основания микромеханического акселерометра, передающихся через стеклянную обкладку чувствительного элемента на внешнюю рамку, соединенную с двухплечевым маятником с помощью упругих торсионов. Жесткие балки, сформированные во внешних углах внешней рамки и соединенные с близлежащими внутренними углами дополнительной опорной рамки исключают паразитные силы и моменты после сборки всего чувствительного элемента, действующие со стороны основания датчика при воздействии вредных внешних факторов. Площадки крепления к основанию акселерометра, расположенные в центре симметрии каждой из сторон дополнительной опорной рамки, обеспечивают минимизацию возникающих контактных напряжений и, следовательно, минимально влияют на упругий торсион, за счет чего уменьшается нестабильность смещения нуля и, как следствие, повышается точность микромеханического акселерометра. Так при воздействии возмущающих факторов, в частности плюсовых и минусовых температур, конструкция чувствительного элемента будет минимально деформирована. Из-за разности коэффициентов линейного расширения, основания акселерометра, двухстороннего маятника и стеклянной обкладки при воздействии положительных или отрицательных температур возникает деформация, которая воздействует на дополнительную опорную рамку через площадки крепления от стеклянной обкладки. Площадки крепления к стеклянным обкладкам расположены в центре симметрии каждой из сторон дополнительной опорной рамке и, следовательно, всего чувствительного элемента. Напряжение, возникающие в «основании-стеклянная обкладка» равномерно передается через площадки крепления к стеклянной обкладке на дополнительную рамку, затем, через жесткие балки, на внешнюю рамку и только затем остаточная затухающая деформация на упругий торсион. Таким образом, остаточные деформации, передающиеся, на упругий торсион сведены к минимуму. А это уменьшает уход крутизны преобразователя перемещений, уменьшает температурное смещение нулевого сигнала, уменьшает температурную погрешность. Причем жесткие растяжки сформированы таким образом, чтобы исключить их деформацию по перекрестным осям относительно измерительной оси, обеспечивая лишь деформацию на предельно высоким ускорениям по измерительной оси. Это обеспечивает защиту при вибрациях и ударах. Предложенный микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям иллюстрируется чертежами, представленными на фиг. 1, фиг. 2. На фиг. 1 представлен основной вид микромеханического акселерометра с низкой чувствительностью к термомеханическим воздействиям, где:

1 - двухплечевой маятник,

2 - упругий торсион,

3 - внешняя рамка,

4 - дополнительная опорная рамка,

5 - жесткие балки,

6 - площадки крепления к стеклянным обкладкам,

7 - стеклянная обкладка,

8 - контактные площадки,

На фиг. 2 вид А - А. где:

9 - электроды.

Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям содержит двухплечевой маятник 1, соединенный с внешней рамкой 3 через упругие торсионы 2. Внешняя рамка 3 соединена с дополнительной опорной рамкой 4 через жесткие балки 5. Площадки крепления к стеклянным обкладкам 6 сформированы с обеих сторон дополнительной опорной рамки 4. Одной стороной дополнительная опорная рамка 4 соединена через площадки крепления к стеклянным обкладкам 6 со стеклянной обкладкой 7. На другой стороне дополнительной опорной рамки 4 на одной или двух площадках крепления к стеклянным обкладкам 6 методом магнетронного напыления сформирована контактная площадка 8. Другие контактные площадки 8 сформированы на стеклянной обкладке 7 и электрически соединены с сформированными электродами 9. Таким образом, сформирован чувствительный элемент микромеханического акселерометра с низкой чувствительностью к термомеханическим воздействиям. Для соединения электродов 9 и проводящего двухплечевого маятника со схемой обработки сигнала емкостного преобразователя перемещения микромеханического акселерометра предназначены контактные площадки 8.

Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям работает следующим образом. При действии линейного ускорения двухплечевой маятник 1 отклоняется от своего нейтрального положения упругие торсионы 2 закручиваются на определенный угол. Возникающий дисбаланс дифференциального емкостного преобразователя перемещений, реализованный на стеклянной обкладке 7 с сформированными на ней электродами 9 и проводящем двухплечевом маятнике 1 пропорционален величине измеряемого ускорения. При воздействии плюсовых и минусовых температур, конструкция чувствительного элемента будет минимально деформирована. Из-за разности коэффициентов линейного расширения, основания акселерометра (не показано), двухплечевого маятника 1 и стеклянной обкладки 7 после воздействия положительных или отрицательных температур возникает деформация, которая воздействует на дополнительную опорную рамку 4 через площадки крепления к стеклянной обкладке 6 от стеклянной обкладки 7.

Сформированная дополнительная опорная рамка 4 выполняет функцию буфера между двухплечевым маятником 1 и неподвижным основанием акселерометра через стеклянную обкладку 7 чувствительного элемента. Жесткие балки 5, сформированные во внешних углах внешней рамки 3 и соединенные с близлежащими внутренними углами дополнительной опорной рамки 4 исключают паразитные силы и моменты после сборки всего чувствительного элемента, действующие со стороны основания датчика при воздействии вредных внешних факторов.

Площадки крепления к стеклянным обкладкам 6 расположены в центре симметрии каждой из сторон дополнительной опорной рамки 4 и, следовательно, всего чувствительного элемента. При деформации, возникающей в основании-стеклянная обкладка 7 напряженное состояние передается, причем равномерно через площадки крепления к стеклянной обкладке 6 на дополнительную опорную рамку 4. Затем напряженное состояние передается, через жесткие балки 5, на внешнюю рамку 3, и только затем остаточная затухающая деформация на упругий торсион 2. Таким образом, остаточные деформации, передающиеся на упругий торсион 2 сведены к минимуму. А это уменьшает уход крутизны преобразователя перемещений, уменьшает температурное смещение нулевого сигнала, уменьшает температурную погрешность.

Кроме того формирование дополнительной опорной рамки, согласно выражению (3) или (4) уменьшает чувствительность к контактным напряжениям или величине напряжений, следовательно, увеличивается точность прибора в целом.

Причем жесткие растяжки 5 сформированы таким образом, чтобы исключить их деформацию по перекрестным осям относительно измерительной оси, обеспечивая лишь деформацию на предельно высоким ускорениям по измерительной оси. Это обеспечивает защиту при вибрациях и ударах.

Чувствительный элемент микромеханического акселерометра изготавливается из монокристаллического кремния с ориентацией пластины <100>÷<110> методом анизотропного травления и из стекла марки ЛК - 5 с соединением кремниевого узла и стеклянной подложки методом анодной посадки.

Проведенные макетные испытания показали положительный эффект предлагаемого устройства и по технологии, и по точности.

Источники информации:

1. Паршин В.А., Харитонов В.И. Особенности технологии мультисенсорных датчиков с нелегированными упругими подвесами //Датчики и системы. 2002. №2. С. 22-24.

2. Патент US 6768196

3. Патент РФ №2251702

4. Патент РФ №154439 - прототип.

Похожие патенты RU2746762C1

название год авторы номер документа
Микромеханический акселерометр с высокой устойчивостью к термомеханическим напряжениям 2021
  • Косторной Андрей Николаевич
  • Аксенов Константин Сергеевич
  • Брыкало Сергей Сергеевич
  • Ткачев Александр Вячеславович
  • Кашаев Александр Александрович
  • Малыгин Сергей Владимирович
  • Большаков Дмитрий Сергеевич
RU2774824C1
Микромеханический акселерометр 2020
  • Косторной Андрей Николаевич
  • Миронов Сергей Геннадьевич
  • Аксенов Константин Сергеевич
  • Брыкало Сергей Сергеевич
  • Ткачев Александр Вячеславович
  • Кашаев Александр Александрович
  • Малыгин Сергей Владимирович
RU2753475C1
Чувствительный элемент микромеханического акселерометра 2021
  • Косторной Андрей Николаевич
  • Аксенов Константин Сергеевич
  • Брыкало Сергей Сергеевич
  • Ткачев Александр Вячеславович
  • Кашаев Александр Александрович
  • Малыгин Сергей Владимирович
  • Большаков Дмитрий Сергеевич
RU2773069C1
Чувствительный элемент микромеханического акселерометра 2020
  • Косторной Андрей Николаевич
  • Миронов Сергей Геннадьевич
  • Аксенов Константин Сергеевич
  • Брыкало Сергей Сергеевич
  • Ткачев Александр Вячеславович
  • Кашаев Александр Александрович
  • Малыгин Сергей Владимирович
RU2748290C1
Твердотельный датчик линейных ускорений 2020
  • Косторной Андрей Николаевич
  • Миронов Сергей Геннадьевич
  • Аксенов Константин Сергеевич
  • Брыкало Сергей Сергеевич
  • Ткачев Александр Вячеславович
  • Кашаев Александр Александрович
  • Малыгин Сергей Владимирович
RU2746112C1
Микромеханический акселерометр 2020
  • Косторной Андрей Николаевич
  • Миронов Сергей Геннадьевич
  • Аксенов Константин Сергеевич
  • Брыкало Сергей Сергеевич
  • Ткачев Александр Вячеславович
  • Кашаев Александр Александрович
  • Малыгин Сергей Владимирович
  • Комарова Марина Юрьевна
  • Радаев Виктор Алексеевич
RU2746763C1
МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР 2012
  • Чаплыгин Юрий Александрович
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Киргизов Сергей Викторович
  • Глазков Олег Николаевич
  • Анчутин Степан Александрович
  • Кочурина Елена Сергеевна
  • Тимошенков Алексей Сергеевич
RU2515378C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МИКРОМЕХАНИЧЕСКОГО АКСЕЛЕРОМЕТРА 2011
  • Чаплыгин Юрий Александрович
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Киргизов Сергей Викторович
  • Глазков Олег Николаевич
  • Головань Антон Сергеевич
  • Тимошенков Алексей Сергеевич
  • Кочурина Елена Сергеевна
  • Анчутин Степан Александрович
  • Рубчиц Вадим Григорьевич
RU2492490C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ МИКРОМЕХАНИЧЕСКОГО КОМПЕНСАЦИОННОГО АКСЕЛЕРОМЕТРА 2012
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Киргизов Сергей Викторович
  • Глазков Олег Николаевич
  • Тимошенков Алексей Сергеевич
RU2497133C1
ТВЕРДОТЕЛЬНЫЙ ДАТЧИК ЛИНЕЙНЫХ УСКОРЕНИЙ 2018
  • Тимошенков Сергей Петрович
  • Калугин Виктор Владимирович
  • Анчутин Степан Александрович
  • Тимошенков Андрей Сергеевич
  • Дернов Иван Сергеевич
  • Зарянкин Николай Михайлович
  • Виноградов Анатолий Иванович
  • Тимошенков Алексей Сергеевич
RU2692122C1

Иллюстрации к изобретению RU 2 746 762 C1

Реферат патента 2021 года Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям

Изобретение относится к измерительной технике и может применяться в микромеханических акселерометрах, микрогироскопах, интегральных датчиках давления. Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям содержит двухплечевой маятник из монокристаллического кремния, стеклянную обкладку, внешнюю рамку с площадками крепления к стеклянной обкладке. Внешняя рамка соединена с двухплечевым маятником через упругие торсионы. Сформирована дополнительная опорная рамка, соединенная с внешней рамкой через жесткие балки. Площадки крепления к стеклянной обкладке сформированы на дополнительной опорной рамке. Технический результат – повышение точности и снижение трудоемкости. 2 ил.

Формула изобретения RU 2 746 762 C1

Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям, содержащий двухплечевой маятник из монокристаллического кремния, стеклянную обкладку, внешнюю рамку с площадками крепления к стеклянной обкладке, соединенную с двухплечевым маятником через упругие торсионы, отличающийся тем, что сформирована дополнительная опорная рамка, соединенная с внешней рамкой через жесткие балки, причем жесткие балки сформированы во внешних углах внешней рамки и соединены с близлежащими внутренними углами дополнительной опорной рамки, при этом площадки крепления к стеклянной обкладке сформированы на дополнительной опорной рамке в центре симметрии каждой из сторон дополнительной опорной рамки.

Документы, цитированные в отчете о поиске Патент 2021 года RU2746762C1

0
SU154439A1
0
SU154143A1
CN 105182003 A, 23.12.2015
WO 2011136971 A1, 03.11.2011.

RU 2 746 762 C1

Авторы

Косторной Андрей Николаевич

Миронов Сергей Геннадьевич

Аксенов Константин Сергеевич

Брыкало Сергей Сергеевич

Ткачев Александр Вячеславович

Кашаев Александр Александрович

Малыгин Сергей Владимирович

Даты

2021-04-20Публикация

2020-09-15Подача