ОПТИЧЕСКАЯ СИСТЕМА Российский патент 2021 года по МПК G02B9/64 

Описание патента на изобретение RU2746941C1

Изобретение относится к оптическому приборостроению и может быть использовано при создании телевизионных и фотографических систем, а также в измерительных приборах с многоэлементными матричными приемниками излучения.

Известен объектив (см. патент на полезную модель RU 147364 U1, МПК7 G02B 9/12, 11/12, публ. 10.11.2014 г.) с фокусным расстоянием 50 мм, относительным отверстием 1:2,94 и угловым полем зрения 35°. Недостатками данного объектива являются наличие двух асферических поверхностей, повышающих затраты на изготовление, и большое значение дисторсии на краю поля зрения (-6%).

Наиболее близкой по технической сущности к заявляемой системе, принятой за прототип, является телецентрический объектив (см. патент RU 2278403 С1, МПК7 G02B 13/22, 9/64 публ. 20.06.2006 г.). В состав объектива входят две линзовые группы, содержащие соответственно четыре и семь линз. В первой группе первая линза выполнена отрицательной выпукло-вогнутой, вторая - двояковогнутой, третья - двояковыпуклой, четвертая -положительной вогнуто-выпуклой. Во второй группе первая линза выполнена отрицательной выпукло-вогнутой, вторая - двояковыпуклой, третья - отрицательной вогнуто-выпуклой, четвертая - отрицательной выпукло-вогнутой, пятая - двояковыпуклой, шестая - отрицательной выпукло-вогнутой, седьмая - положительной выпукло-вогнутой. В пространстве между группами расположена апертурная диафрагма. Объектив предназначен для работы в спектральном диапазоне спектра от 0,5 до 0,9 мкм, имеет фокусное расстояние f=40 мм, относительное отверстие 1:6, угловое поле зрения 54°. Длина от первой поверхности до плоскости чувствительных элементов матричного приемника излучения (МПИ) составляет L=201,7 мм.

К недостаткам указанного объектива можно отнести невысокое относительное отверстие, большую длину и большое количество линз. Кроме того, приведенные значения МПФ (модуляционной передаточной функции) свидетельствуют о невысоком качестве его изображения. Лучшие значения МПФ получены для спектрального диапазона 0,5-0,6 мкм и составляют для 70 лин/мм в центре поля зрения 0,67, в середине - 0,58 в меридиональном сечении (m) и 0,64 в сагиттальном сечении (s), на краю поля зрения - 0,43 (m) и 0,56 (s).

Задачей, на решение которой направлено изобретение, является повышение относительного отверстия оптической системы при уменьшении ее длины, упрощении конструкции и высоком качестве изображения в пределах всего поля зрения.

Указанная цель достигается тем, что в оптической системе, состоящей из расположенных вдоль оптической оси первой линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую и третью линзы, и второй линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую двояковыпуклую, третью отрицательную вогнуто-выпуклую и четвертую отрицательную линзы, и приемника излучения, в первой группе вторая линза выполнена положительной выпукло-вогнутой, третья - отрицательной выпукло-вогнутой, а во второй группе четвертая линза выполнена вогнуто-выпуклой, при этом выполняются следующие соотношения:

-6,3≤f'1/f'≤-5,3;

0,7≤f'II/f'≤1,3;

1,2≤d1-2/f'≤1,8;

0,4≤d6-7/f'≤0,6,

где f'1 - фокусное расстояние первой линзы первой линзовой группы; f'II - фокусное расстояние второй линзовой группы; d1-2 - расстояние между первой и второй линзами первой линзовой группы, d6-7 - расстояние между третьей и четвертой линзами второй линзовой группы; f' - фокусное расстояние системы.

На фигуре 1 представлена схема оптической системы.

На фигуре 2а представлены графики МПФ системы, где максимальное значение пространственной частоты (117 лин/мм) определено для размера пикселя приемника излучения (4,25 мкм).

На фигуре 26 представлен график дисторсии оптической системы.

Оптическая система состоит из расположенных вдоль оптической оси первой линзовой группы I, содержащей первую отрицательную 1, вторую положительную 2 и третью отрицательную 3 выпукло-вогнутые линзы, и второй линзовой группы II, содержащей первую отрицательную выпукло-вогнутую 4, вторую двояковыпуклую 5, третью отрицательную вогнуто-выпуклую 6 и четвертую отрицательную вогнуто-выпуклую линзы 7, и приемника излучения 8. В системе выполняются следующие соотношения: -6,3≤f'1/f'≤-5,3; 0,7≤f'II/f'≤1,3; 1,2≤d1-2/f'≤1,8; 0,4≤d6-7/f'≤0,6, где f'1 - фокусное расстояние первой линзы 1 первой линзовой группы I; f'II -фокусное расстояние второй линзовой группы II; d1-2 - расстояние между первой 1 и второй 2 линзами первой линзовой группы I, d6-7 - расстояние между третьей 6 и четвертой 7 линзами второй линзовой группы II; f' - фокусное расстояние системы. Первая поверхность первой линзы 5 второй группы II является апертурной диафрагмой системы.

В таблице 1 приведены конструктивные параметры примера исполнения оптической системы.

В таблице 2 приведены соотношения, выполняемые в заявляемой системе, где f'1 - фокусное расстояние первой линзы 1 первой линзовой группы I; f'II - фокусное расстояние второй линзовой группы II; d1-2 - расстояние между первой 1 и второй 2 линзами первой линзовой группы I, d6-7 - расстояние между третьей 6 и четвертой 7 линзами второй линзовой группы II; f' - фокусное расстояние системы.

В таблице 3 приведены технические характеристики оптической системы.

В таблице 4 приведены значения МПФ системы для 70 лин/мм во всем спектральном диапазоне для центра, середины и края поля зрения.

Как следует из таблицы 3 относительное отверстие заявляемой системы увеличено в 1,5 раза по сравнению с прототипом, длина при этом уменьшилась в 1,9 раза. В отличие от прототипа заявляемая система содержит семь оптических элементов, причем в первой линзовой группе стало на одну линзу меньше, а во второй - на три.

Повышение относительного отверстия, уменьшение длины и количества элементов при обеспечении высокого качества изображения достигается выбором фокусных расстояний линз и групп линз, их взаимным расположением при выполнении приведенных в таблице 2 соотношений и соответствующим выбором материалов.

Из приведенных на фигуре 2(a) графиков МПФ следует, что оптическая система обладает высоким качеством изображения в широком спектральном диапазоне в пределах всего поля зрения. Как видно из таблицы 4 значения МПФ для 70 лин/мм в заявляемой системе существенно превышают аналогичные значения прототипа. Из приведенного на фигуре 2(б) графика следует, что система обладает хорошо исправленной дисторсией в пределах всего поля зрения, что позволяет использовать ее в измерительных приборах.

Оптическая система работает следующим образом: поток излучения проходит через линзы 1-7 системы, преломляясь на каждой поверхности в соответствии с радиусами кривизны и материалами линз и фокусируется в плоскости чувствительных элементов приемника излучения 8. Диаметр пучка излучения определяется диаметром апертурной диафрагмы совпадающей с первой поверхностью первой линзы 5 второй группы II.

Таким образом, выполнение оптической системы в соответствии с предлагаемым техническим решением обеспечивает повышение относительного отверстия при уменьшении длины, упрощении конструкции и высоком качестве изображения в пределах всего поля зрения.

Похожие патенты RU2746941C1

название год авторы номер документа
Объектив с вынесенным входным зрачком для ближней ИК-области спектра (варианты) 2023
  • Шемигон Татьяна Николаевна
  • Михайловский Артур Игоревич
  • Добряков Борис Николаевич
  • Зимин Владимир Аркадьевич
RU2820282C1
ДВУХКАНАЛЬНЫЙ ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ОБЪЕКТИВ 2014
  • Архипов Сергей Алексеевич
  • Заварзин Валерий Иванович
  • Кравченко Станислав Олегович
  • Линько Виктория Михайловна
  • Морозов Сергей Александрович
  • Тарасов Александр Петрович
RU2556295C1
Объектив светосильный инфракрасный 2023
  • Григорьев Алексей Владимирович
  • Чистяков Сергей Олегович
  • Бажанова Людмила Юрьевна
RU2806167C1
ОБЪЕКТИВ С ПЕРЕМЕННЫМ ФОКУСНЫМ РАССТОЯНИЕМ 2005
  • Попов Михаил Вячеславович
RU2330315C2
ИНФРАКРАСНЫЙ ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ОБЪЕКТИВ С ДВОЙНЫМ ПОЛЕМ ЗРЕНИЯ 2005
  • Зарубин Владимир Петрович
  • Щеглов Сергей Иванович
RU2292066C1
ИНФРАКРАСНАЯ СИСТЕМА С ДВУМЯ ПОЛЯМИ ЗРЕНИЯ 2018
  • Балоев Виллен Арнольдович
  • Иванов Владимир Петрович
  • Нигматуллина Наталья Геннадьевна
  • Рагинов Сергей Владимирович
  • Шарифуллина Дина Нургазизовна
RU2694557C1
СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ 2009
  • Щеглов Сергей Иванович
  • Зубок Светлана Николаевна
RU2396581C1
СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ 2007
  • Зубок Светлана Николаевна
  • Щеглов Сергей Иванович
RU2351967C1
СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ 1997
  • Бездидько С.Н.
  • Гришина Л.И.
RU2153691C2
ОБЪЕКТИВ ДЛЯ КОРОТКОВОЛНОВОГО ИНФРАКРАСНОГО ДИАПАЗОНА СПЕКТРА 2022
  • Васильев Денис Юрьевич
  • Воронько Марина Юрьевна
  • Егошин Денис Алексеевич
  • Курт Виктор Иванович
RU2802801C1

Иллюстрации к изобретению RU 2 746 941 C1

Реферат патента 2021 года ОПТИЧЕСКАЯ СИСТЕМА

Оптическая система может использоваться в телевизионных и фотографических системах, а также в измерительных приборах с многоэлементными матричными приемниками излучения. Оптическая система состоит из первой линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую положительную выпукло-вогнутую, третью отрицательную выпукло-вогнутую линзы, второй линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую двояковыпуклую, третью отрицательную вогнуто-выпуклую и четвертую отрицательную вогнуто-выпуклую линзы, и приемника излучения..Выполняются соотношения: -6,3≤f'1/f'≤-5,3; 0,7≤f'II/f'≤1,3; 1,2≤d1-2/f'≤1,8; 0,4≤d6-7/f'≤0,6, где f'1 - фокусное расстояние первой линзы первой линзовой группы; f'II - фокусное расстояние второй линзовой группы; d1-2 - расстояние между первой и второй линзами первой линзовой группы, d6-7 - расстояние между третьей и четвертой линзами второй линзовой группы; f' - фокусное расстояние системы. Технический результат - повышение относительного отверстия оптической системы при уменьшении ее длины, упрощении конструкции и высоком качестве изображения в пределах всего поля зрения. 4 табл., 2 ил.

Формула изобретения RU 2 746 941 C1

Оптическая система, состоящая из расположенных вдоль оптической оси первой линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую и третью линзы, и второй линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую двояковыпуклую, третью отрицательную вогнуто-выпуклую и четвертую отрицательную линзы, и приемника излучения, отличающаяся тем, что в первой группе вторая линза выполнена положительной выпукло-вогнутой, третья - отрицательной выпукло-вогнутой, а во второй группе четвертая линза выполнена вогнуто-выпуклой, при этом выполняются следующие соотношения:

-6,3≤f'1/f'≤-5,3;

0,7≤f'II/f'≤1,3;

1,2≤d1-2/f'≤1,8;

0,4≤ d6-7/f'≤0,6;

где f'1 - фокусное расстояние первой линзы первой линзовой группы; f'II - фокусное расстояние второй линзовой группы; d1-2 - расстояние между первой и второй линзами первой линзовой группы, d6-7 - расстояние между третьей и четвертой линзами второй линзовой группы; f ' - фокусное расстояние системы.

Документы, цитированные в отчете о поиске Патент 2021 года RU2746941C1

ТЕЛЕЦЕНТРИЧЕСКИЙ ОБЪЕКТИВ 2004
  • Мельникова Нина Николаевна
  • Грудзино Юрий Борисович
  • Давиденко Владимир Прокофьевич
  • Румянцев Виктор Васильевич
RU2278403C1
ШИРОКОУГОЛЬНЫЙ ОБЪЕКТИВ 2017
  • Богданков Владимир Александрович
RU2676554C1
US 2007223114 A1, 27.09.2007
Фотографический объектив 1991
  • Шаманина Татьяна Александровна
  • Тарабукин Валерий Васильевич
  • Максименко Надежда Тимофеевна
SU1775700A1

RU 2 746 941 C1

Авторы

Балоев Виллен Арнольдович

Иванов Владимир Петрович

Нигматуллина Наталья Геннадьевна

Рагинов Сергей Владимирович

Скочилова Ирина Анатольевна

Шарифуллина Дина Нургазизовна

Даты

2021-04-22Публикация

2020-06-08Подача