Кислородно-топливная энергоустановка Российский патент 2021 года по МПК F02C6/00 

Описание патента на изобретение RU2749081C1

Изобретение относится к области электроэнергетики и может быть использовано при разработке электрических станций с малыми выбросами вредных веществ в атмосферу.

Известна энергоустановка, работающая по полузакрытому циклу с кислородным сжиганием топлива (Bolland О., Saether S. New concepts for natural gas fired power plants which simplify the recovery of carbon dioxide //Energy Conversion and Management. - 1992. - T. 33. - №. 5-8. - C. 467-475.), содержащая многоступенчатый компрессор, камеру сгорания, топливный компрессор, воздухоразделительную установку, газовую турбину, котел-утилизатор, охладитель-сепаратор, многоступенчатый компрессор с промежуточным охлаждением, паровую турбину, конденсатор, насос, первый и второй электрогенераторы.

Недостатком данного технического решения являются большие потери теплоты в охладителе-сепараторе.

Наиболее близкой по технической сущности к предлагаемому изобретению является энергоустановка, работающая по полузакрытому циклу с кислородным сжиганием топлива (Рогалев А.Н., Киндра В.О., Зонов А.С., Рогалев Н.Д. Исследование экологически безопасных энергетических комплексов с кислородным сжиганием топлива // Новое в российской энергетике. - 2019. - 8. - С. 6-25.), содержащая многоступенчатый компрессор, камеру сгорания, топливный компрессор, воздухоразделительную установку, газовую турбину, котел-утилизатор, охладитель-сепаратор, многоступенчатый компрессор с промежуточным охлаждением, паровую турбину, конденсатор, насос, первый и второй электрогенераторы.

Недостатком данного технического решения являются большие потери теплоты в охладителе-сепараторе.

Техническая задача, решаемая предлагаемым изобретением, заключается в снижении потерь за счет полезной утилизации низкопотенциальной теплоты газов на выходе из котла-утилизатора в дополнительном цикле, работающем на углекислом газе.

Технический результат заключается повышении электрического КПД энергоустановки.

Это достигается тем, что известная кислородно-топливная энергоустановка, содержащая многоступенчатый компрессор, выход которого соединен с входом камеры сгорания, выход которой последовательно соединен с газовой турбиной, котлом-утилизатором, включающим газоводяной двухпоточный теплообменник, содержащий горячий газовый контур теплоносителя и холодный водяной контур теплоносителя, и охладителем-сепаратором, выход которого параллельно соединен с входом многоступенчатого компрессора с промежуточным охлаждением и с входом многоступенчатого компрессора, топливный компрессор и воздухоразделительную установку, выходы которых соединены с двумя другими входами камеры сгорания, последовательно соединенные паровую турбину, конденсатор, насос, выход которого соединен с входом холодного контура теплоносителя газоводяного двухпоточного теплообменника, а его выход соединен с паровой турбиной, идентичные первый и второй электрогенераторы, расположенные на одном валу с газовой и паровой турбинами соответственно, снабжена газовоздушным двухпоточным теплообменником, содержащим собственный горячий газовый контур теплоносителя и холодный углекислотный контур теплоносителя, турбодетандером, дополнительным конденсатором, дополнительным насосом и третьим электрогенератором, при этом вход горячего газового контура теплоносителя газовоздушного двухпоточного теплообменника подсоединен к выходу горячего газового контура теплоносителя газоводяного двухпоточного теплообменника, а его выход присоединен к охладителю-сепаратору, причем выход холодного углекислотного контура теплоносителя газовоздушного двухпоточного теплообменника соединен с турбодетандером, который последовательно соединен с дополнительным конденсатором и дополнительным насосом, выход которого соединен с входом холодного углекислотного контура теплоносителя газовоздушного двухпоточного теплообменника, при этом турбодетандер механически соединен с третьим электрогенератором.

Сущность изобретения поясняется чертежом, на котором представлена принципиальная тепловая схема кислородно-топливной энергоустановки.

Кислородно-топливная энергоустановка содержит многоступенчатый компрессор 1, камеру сгорания 2, топливный компрессор 3, воздухоразделительную установку 4, газовую турбину 5, котел-утилизатор 6, который выполнен в виде двух теплообменников - газоводяного двухпоточного теплообменника 7, содержащего горячий газовый контур теплоносителя 8 и холодный водяной контур теплоносителя 9, а также газовоздушного двухпоточного теплообменника 10, содержащего горячий газовый контур теплоносителя 11 и холодный углекислотный контур теплоносителя 12, охладитель-сепаратор 13, многоступенчатый компрессор с промежуточным охлаждением 14, паровую турбину 15, конденсатор 16, насос 17, турбодетандер 18, дополнительный конденсатор 19, дополнительный насос 20, первый электрогенератор 21, второй электрогенератор 22, третий электрогенератор 23. При этом многоступенчатый компрессор 1 расположен на одном валу с газовой турбиной 5, которая имеет механическую связь с первым электрогенератором 21. Паровая турбина 15 имеет механическую связь со вторым электрогенератором 22, а турбодетандер 18 с третьим электрогенератором 23.

Вход многоступенчатого компрессора 1 выполнен с возможностью подачи диоксида углерода, а выход многоступенчатого компрессора 1 соединен с первым входом камеры сгорания 2, со вторым входом камеры сгорания 2 соединен выход топливного компрессора 3, а третий вход камеры сгорания 2 соединен с выходом воздухоразделительной установки 4. Выход камеры сгорания 2 соединен с входом газовой турбины 5, выход которой соединен с горячим газовым контуром теплоносителя 8 газоводяного двухпоточного теплообменника 7 котла утилизатора 6. Выход горячего газового контура теплоносителя 8 газоводяного двухпоточного теплообменника 7 котла утилизатора 6 соединен с входом горячего газового контура теплоносителя 11 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6, который в свою очередь соединен с охладителем-сепаратором 13. Первый выход охладителя-сепаратора 13 параллельно соединен с многоступенчатым компрессором с промежуточным охлаждением 14 и многоступенчатым компрессором 1. Выход холодного водяного контура теплоносителя 9 газоводяного двухпоточного теплообменника 7 котла утилизатора 6 соединен с входом паровой турбины 15, выход которой соединен с конденсатором 16. Вход насоса 17 соединен с выходом конденсатора 16, а выход насоса 17 с входом холодного водяного контура 9 газоводяного двухпоточного теплообменника 7 котла утилизатора 6. Выход холодного углекислотного контура теплоносителя 12 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6 соединен с входом в турбодетандер 18, выход которого соединен с дополнительным конденсатором 19. Вход дополнительного насоса 20 соединен с выходом дополнительного конденсатора 19, а выход дополнительного насоса 20 соединен с входом холодного углекислотного контура теплоносителя 12 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6.

Кислородно-топливная энергоустановка работает следующим образом. На вход многоступенчатого компрессора 1 подается поток рабочей среды, который после сжатия в многоступенчатом компрессоре 1 направляется на первый вход камеры сгорания 2, на второй вход подается природный газ, предварительно сжатый в топливном компрессоре 3, а на третий вход подается кислород, полученный в воздухоразделительной установке 4. После сгорания горячей смеси и выработки полезной работы в газовой турбине 5 выхлопные газы проходят через горячий газовый контур теплоносителя 8 газоводяного двухпоточного теплообменника 7 котла утилизатора 6, где они передают свою теплоту рабочей среде холодного водяного контура теплоносителя 9 газоводяного двухпоточного теплообменника 7 котла-утилизатора 6, после чего поступают на вход в горячий газовый контур теплоносителя 11 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6, в котором происходит процесс передачи теплоты холодному углекислотному контуру теплоносителя 12 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6. Затем выхлопные газы попадают в охладитель-сепаратор 13, в котором происходит конденсация водяных паров и их удаление из цикла через второй выход охладителя-сепаратора 13. Образовавшийся в результате сжигания природного газа избыток диоксид углерода сжимается в многоступенчатом компрессоре с промежуточным охлаждением 14 и направляется на захоронение, а оставшаяся рабочая среда снова направляется на вход многоступенчатого компрессора 1. Перегретый пар, выработанный в холодном водяном контуре теплоносителя 9 газоводяного двухпоточного теплообменника 7 котла-утилизатора 6, расширяясь, совершает работу в паровой турбине 15, после чего направляется в конденсатор 16. Образовавшийся конденсат с помощью насоса 17 направляется обратно на вход холодного водяного контура теплоносителя 9 газоводяного двухпоточного теплообменника 7 котла утилизатора 6. Нагретая рабочая среда холодного углекислотного контура теплоносителя 12 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6 поступает в турбодетандер 18, в котором, расширяясь, совершает полезную работу, после чего направляется в дополнительный конденсатор 19. Образовавшийся конденсат дополнительным насосом 20 подается на вход холодного углекислотного контура теплоносителя 12 газовоздушного двухпоточного теплообменника 10 котла утилизатора 6. Для охлаждения газовой турбины 5 используется рабочая среда, отобранная из компрессора 1.

Результаты моделирования кислородно-топливной энергоустановки показали, что электрический КПД нетто вырос на 1,25% по сравнению с прототипом при одинаковых термодинамических параметрах цикла - начальная температура цикла 1400°, начальное давление 60 бар, давление на выхлопе газовой турбины 1 бар.

Использование изобретения позволяет повысить электрический КПД кислородно-топливной энергоустановки за счет установки дополнительного газовоздушного двухпоточного теплообменника 10 котла утилизатора 6, турбодетандера 18, дополнительного конденсатора 19, дополнительного насоса 20 и третьего электрогенератора 23. В предлагаемой схеме предусматривается полезное использование теплоты уходящих газов после котла-утилизатора 6 в холодном углекислотном контуре теплоносителя 12 газовоздушного двухпоточного теплообменника 10 котла-утилизатора 6, что позволяет выработать дополнительную энергию в турбодетандере 18 при расширении подогретого углекислого газа.

Похожие патенты RU2749081C1

название год авторы номер документа
Кислородно-топливная энергоустановка 2021
  • Киндра Владимир Олегович
  • Комаров Иван Игоревич
  • Злывко Ольга Владимировна
  • Осипов Сергей Константинович
RU2775732C1
Кислородно-топливная энергоустановка для совместного производства аммиака и электроэнергии 2023
  • Брызгунов Павел Александрович
  • Рогалев Николай Дмитриевич
  • Рогалев Андрей Николаевич
  • Киндра Владимир Олегович
  • Злывко Ольга Владимировна
RU2811228C1
Кислородно-топливная энергоустановка для совместного производства электроэнергии и водорода 2023
  • Киндра Владимир Олегович
  • Опарин Максим Витальевич
  • Ковалев Дмитрий Сергеевич
  • Островский Михаил Андреевич
  • Злывко Ольга Владимировна
RU2814174C1
Кислородно-топливная энергоустановка 2020
  • Киндра Владимир Олегович
  • Злывко Ольга Владимировна
  • Зонов Алексей Сергеевич
  • Капланович Илья Борисович
RU2743480C1
Кислородно-топливная энергоустановка 2020
  • Киндра Владимир Олегович
  • Комаров Иван Игоревич
  • Зонов Алексей Сергеевич
  • Смирнов Матвей Владимирович
RU2751420C1
Способ производства электроэнергии на основе закритического СО-цикла 2023
  • Садкин Иван Сергеевич
  • Щинников Павел Александрович
RU2810854C1
Кислородно-топливная энергоустановка с газификацией угля 2021
  • Комаров Иван Игоревич
  • Рогалев Николай Дмитриевич
  • Соколов Владимир Петрович
  • Харламова Дарья Михайловна
  • Куроптев Денис Борисович
RU2757404C1
СПОСОБ РАБОТЫ ЭНЕРГЕТИЧЕСКОЙ ГАЗОТУРБОДЕТАНДЕРНОЙ УСТАНОВКИ ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ 2022
  • Шелудько Леонид Павлович
  • Лившиц Михаил Юрьевич
  • Земсков Андрей Александрович
RU2791066C1
СПОСОБ РАБОТЫ И УСТРОЙСТВО ГАЗОТУРБИННОЙ УСТАНОВКИ С КОМПЛЕКСНОЙ СИСТЕМОЙ ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛОТЫ И СНИЖЕНИЯ ВРЕДНЫХ ВЫБРОСОВ В АТМОСФЕРУ 2000
  • Акчурин Х.И.
RU2194870C2
Энергетическая установка замкнутого цикла системы автономного энергообеспечения специальных объектов 2024
  • Щербаков Андрей Викторович
  • Терехин Андрей Николаевич
  • Харьковский Виталий Владимирович
RU2824694C1

Иллюстрации к изобретению RU 2 749 081 C1

Реферат патента 2021 года Кислородно-топливная энергоустановка

Изобретение относится к области электроэнергетики, может быть использовано при разработке электрических станций с малыми выбросами вредных веществ в атмосферу и направлено на повышение электрического КПД энергоустановки. Кислородно-топливная энергоустановка содержит многоступенчатый компрессор 1, камеру сгорания 2, топливный компрессор 3, воздухоразделительную установку 4, газовую турбину 5, котел-утилизатор 6, который выполнен в виде двух теплообменников - газоводяного двухпоточного теплообменника 7, содержащего горячий газовый контур теплоносителя 8 и холодный водяной контур теплоносителя 9, а также газовоздушного двухпоточного теплообменника 10, содержащего горячий газовый контур теплоносителя 11 и холодный углекислотный контур теплоносителя 12, охладитель-сепаратор 13, многоступенчатый компрессор с промежуточным охлаждением 14, паровую турбину 15, конденсатор 16, насос 17, турбодетандер 18, дополнительный конденсатор 19, дополнительный насос 20, первый электрогенератор 21, второй электрогенератор 22, третий электрогенератор 23, при этом вход горячего газового контура теплоносителя 11 газовоздушного двухпоточного теплообменника 10 подсоединен к выходу горячего газового контура теплоносителя 8 газоводяного двухпоточного теплообменника 7, а его выход присоединен к охладителю-сепаратору 13, причем выход холодного углекислотного контура теплоносителя 12 газовоздушного двухпоточного теплообменника 10 соединен с турбодетандером 18, который последовательно соединен с дополнительным конденсатором 19 и дополнительным насосом 20, выход которого соединен с входом холодного углекислотного контура теплоносителя 12 газовоздушного двухпоточного теплообменника 10, при этом турбодетандер 18 механически соединен с третьим электрогенератором 23. 1 ил.

Формула изобретения RU 2 749 081 C1

Кислородно-топливная энергоустановка, содержащая многоступенчатый компрессор, выход которого соединен с входом камеры сгорания, выход которой последовательно соединен с газовой турбиной, котлом-утилизатором, включающим газоводяной двухпоточный теплообменник, содержащий горячий газовый контур теплоносителя и холодный водяной контур теплоносителя, и охладителем-сепаратором, выход которого параллельно соединен с входом многоступенчатого компрессора с промежуточным охлаждением и с входом многоступенчатого компрессора, топливный компрессор и воздухоразделительную установку, выходы которых соединены с двумя другими входами камеры сгорания, последовательно соединенные паровую турбину, конденсатор, насос, выход которого соединен с входом холодного контура теплоносителя газоводяного двухпоточного теплообменника, а его выход соединен с паровой турбиной, идентичные первый и второй электрогенераторы, расположенные на одном валу с газовой и паровой турбинами соответственно, отличающаяся тем, что снабжена газовоздушным двухпоточным теплообменником, содержащим собственный горячий газовый контур теплоносителя и холодный углекислотный контур теплоносителя, турбодетандером, дополнительным конденсатором, дополнительным насосом и третьим электрогенератором, при этом вход горячего газового контура теплоносителя газовоздушного двухпоточного теплообменника подсоединен к выходу горячего газового контура теплоносителя газоводяного двухпоточного теплообменника, а его выход присоединен к охладителю-сепаратору, причем выход холодного углекислотного контура теплоносителя газовоздушного двухпоточного теплообменника соединен с турбодетандером, который последовательно соединен с дополнительным конденсатором и дополнительным насосом, выход которого соединен с входом холодного углекислотного контура теплоносителя газовоздушного двухпоточного теплообменника, при этом турбодетандер механически соединен с третьим электрогенератором.

Документы, цитированные в отчете о поиске Патент 2021 года RU2749081C1

РОГАЛЕВ А.Н., КИНДРА В.О., ЗОНОВ А.С., РОГАЛЕВ Н.Д
Исследование экологически безопасных энергетических комплексов с кислородным сжиганием топлива // Новое в российской энергетике, 2019, N8, стр
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
0
SU159686A1
ГАЗОТУРБИННАЯ УСТАНОВКА 1988
  • Гришин А.Н.
  • Слесарев В.А.
RU2029119C1

RU 2 749 081 C1

Авторы

Киндра Владимир Олегович

Рогалев Андрей Николаевич

Осипов Сергей Константинович

Капланович Илья Борисович

Даты

2021-06-03Публикация

2020-11-23Подача