КОСМИЧЕСКИЙ АППАРАТ Российский патент 2021 года по МПК B64G1/42 B64G1/44 F03G6/04 F02G5/02 

Описание патента на изобретение RU2749928C1

Изобретение относится к космической технике и может быть использовано, например, при создании телекоммуникационных космических аппаратов (КА).

Известно (см. патент RU № 2574499 [1]), что для обеспечения работоспособности любого элемента КА в космических условиях эксплуатации на орбите необходимо, в первую очередь, обеспечить поддержание их температур в требуемых рабочих диапазонах (в том числе системы электропитания (СЭП)), что в составе КА функционально обеспечивает СТР КА, и в связи с этим СТР является главной обеспечивающей работоспособность КА системой, определяющей его оптимальную конфигурацию и, следовательно, минимально возможную массу: в среднем СТР КА занимают 9% массы КА и удельные массовые затраты на отвод в космическое пространство 1 кВт тепловой выходной нагрузки - 22 кг/кВт.

Также важной обеспечивающей работоспособность КА системой, определяющей минимально возможную массу КА, является СЭП КА (см. патент RU № 2509691 [2]): СЭП в среднем занимают 20% массы КА и удельные массовые затраты на генерацию выходной электрической мощности - 207 кг/кВт.

Анализ, проведенный при создании мощного, например, КА с тепловой нагрузкой ≈18 кВт и соответственно с электрической мощностью СЭП 27÷30 кВт, показал: как СЭП, так и СТР имеют такие конструкции, которые обуславливают относительно повышенные массы их в общей массе КА (и из-за этого отсутствует возможность установки в составе полезной нагрузки дополнительной целевой аппаратуры, что существенно важно для телекоммуникационных КА).

Наиболее близким прототипом предлагаемого изобретения является [2].

Известный космический аппарат содержит СТР с приборами для отбора, подвода и сброса тепла, (например, в случае использования [1] – см. там фигуру 2 - испарители с капиллярными насосами выполняют функции приборов подвода тепла, а раскрываемые панели с их коллекторами выполняют функции приборов сброса тепла), СЭП, включающей солнечные батареи, комплекс автоматики и стабилизации напряжения (КАС), аккумуляторные батареи с устройством их контроля, аппарат также включает бортовой комплекс управления с бортовой вычислительной машиной.

Как выше показано, как СЭП, так и СТР имеют такие конструктивные особенности, которые обуславливают (в первую очередь – СЭП) относительно повышенные массы их в общей массе КА, что является существенным недостатком известного технического решения [2].

Технической проблемой изобретения является устранение вышеуказанного существенного недостатка.

Указанная техническая проблема решается за счет того, что в космический аппарат, содержащий систему терморегулирования с приборами для отбора, подвода и сброса тепла, систему электропитания, включающую солнечные батареи, комплекс автоматики и стабилизации напряжения, аккумуляторные батареи с устройством их контроля, бортовой комплекс управления с бортовой вычислительной машиной, между приборами подвода тепла и приборами отвода тепла системы терморегулирования введена микротурбина с подключённым к её ротору электрогенератором, выходные клеммы которого с помощью кабеля соединены с комплексом автоматики и стабилизации напряжения системы электропитания.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляет тех же свойств, что в заявляемом изобретении.

В настоящее время авторами разработан физический макет, и проведены его экспериментальные исследования. В соответствии с предложенным авторами изобретением применительно к КА с электрической мощностью СЭП 30 кВт, из них израсходуется в виде полезной выходной мощности полезной нагрузки в количестве не менее 12 кВт, а остальная мощность – 18 кВт превращается в тепловую нагрузку на СТР: в опытном образце физического макета КА согласно предложенному авторами изобретению в качестве СТР использована СТР, соответствующая фигуре 2 патента [1], в которой в результате циркуляции теплоносителя по замкнутому жидкостному контуру с помощью ЭНА 11 кВт излучается поверхностями панелей «+Z» и «-Z» МПН и МСС (см. фигуру 2 [1]), а 7 кВт тепла (аккумулированный в теплоносителе ЛЗ-ТК-2 при температуре не менее 60°С) поступает в испарители с капиллярными насосами - приборы подвода тепла (согласно принятому в [2] термину). В испарителях с капиллярными насосами - приборах подвода тепла циркулирующий в двухфазном контуре теплоноситель (ЛЗ-ТК-2) передает 3,5 кВт тепла рабочему телу (аммиаку), циркулирующему в контуре в результате функционирования капиллярного насоса (расход жидкого аммиака ≈ 4 г/с). При этом аммиак нагревается, затем испаряется и превращается полностью в пар высокого давления (≈ 2,31 МПа) с температурой, равной не менее 55°С. Далее вышеуказанный горячий пар аммиака из двух испарителей поступает на микротурбину и совершает работу, раскручивая ротор микротурбины и подключенного к ней электрогенератора, где происходит генерация электрического тока с выходным напряжением не менее 27 В, и по кабелю, соединяющему выходные клеммы электрогенератора с КАС, осуществляется передача электрической мощности, выработанной СТР, СЭП. После микротурбины парообразный аммиак поступает в коллекторы двух раскрываемых панелей - приборы сброса тепла (согласно принятому в [2] термину), где полностью конденсируется в результате излучения остаточного тепла с поверхностей раскрываемых панелей в космическое пространство. Далее полностью сконденсировавшийся аммиак поступает в капиллярные насосы, и в испарителях происходит снова кипение аммиака, и цикл заново повторяется.

Анализ предварительных опытных данных показывает, что реализация предложенных авторами изобретения обеспечивает:

1) из подведенных к двум раскрываемым панелям радиатора 7 кВт тепла, на выходе электрогенератора получена электрическая мощность ≈ 0,6 кВт с напряжением не менее 27 В и осуществлена подача этой мощности СЭП, т.е. коэффициент полезного действия предложенного технического решения обеспечивает не менее 8%;

2) при этом масса турбины с электрогенератором и кабелем, соединяющим его с СЭП, составляет не более 12 кг;

3) в результате уменьшения отводимой в космическое пространство двумя раскрываемыми панелями радиатора тепловой мощности с 7 кВт до (7 - 0,6) = 6,4 кВт уменьшается требуемая площадь раскрываемых панелей и, следовательно, уменьшается их масса суммарно на 14 кг;

4) в результате подвода к СЭП 0,6 кВт электрической мощности обеспечивается снижение требуемой площади СБ: согласно данным таблицы 4 источника информации “УДК 629.783. М.В.Лукьяненко, В.С.Кудряшов. Энерговооруженность космических аппаратов и бортовые источники электроэнергии” для существующих в настоящее время СЭП при К.П.Д. фотогенерирующей части СБ (26,5 - 29)% 1 кг массы СБ (фотогенерирующая часть и каркас панелей) обеспечивает ≈104 Вт/кг, т.е. обеспечивается снижение массы СЭП на (600 : 104) ≈ 6 кг. (Cледует отметить: из-за уменьшения нагрузки на СЭП также дополнительно уменьшится масса кабелей в составе СЭП).

Таким образом достигается технический результат, заключающийся в общем снижении массы КА: обеспечивается снижение массы СЭП на 6 кг, и массы СТР на 2 кг, и обеспечит повышение массы МПН на 8 кг, что существенно для телекоммуникационных КА.

Похожие патенты RU2749928C1

название год авторы номер документа
КОСМИЧЕСКИЙ АППАРАТ 1999
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
RU2156211C1
КОСМИЧЕСКИЙ АППАРАТ 2000
  • Лукащук И.П.
  • Ванякин Л.П.
  • Фомакин В.Н.
  • Китаев А.И.
  • Госпиталь А.Ю.
  • Лукащук В.А.
  • Китаева О.Н.
  • Цветков Г.А.
  • Сакриер В.А.
  • Богословская В.И.
  • Агупова Н.Г.
RU2196079C2
КОСМИЧЕСКИЙ АППАРАТ 2001
  • Лукащук И.П.
  • Ванякин Л.П.
  • Фомакин В.Н.
  • Китаев А.И.
  • Госпиталь А.Ю.
  • Лукащук В.А.
  • Китаева О.Н.
  • Цветков Г.А.
  • Сакриер В.А.
  • Богословская В.И.
  • Агупова Н.Г.
RU2198830C2
КОСМИЧЕСКИЙ АППАРАТ 1999
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
  • Черкунов А.Б.
RU2164881C1
КОСМИЧЕСКИЙ АППАРАТ 1998
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Томина В.С.
  • Китаев А.И.
  • Быков С.М.
RU2144889C1
КОСМИЧЕСКИЙ АППАРАТ 2013
  • Сторож Александр Дмитриевич
  • Лукащук Иван Петрович
  • Китаев Александр Ирикович
  • Фомакин Виктор Николаевич
  • Арефьева Татьяна Николаевна
  • Левин Аркадий Борисович
RU2543433C2
КОСМИЧЕСКИЙ АППАРАТ 2000
  • Лукащук И.П.
  • Быков С.М.
  • Фомакин В.Н.
  • Лукащук В.А.
  • Сакриер В.А.
  • Цветков Г.А.
RU2192370C2
УНИФИЦИРОВАННАЯ КОСМИЧЕСКАЯ ПЛАТФОРМА МОДУЛЬНОГО ПРИНЦИПА ПОСТРОЕНИЯ 2018
  • Лесихин Валерий Васильевич
  • Яковлев Андрей Викторович
  • Яковлева Анна Валерьевна
  • Биндокас Кирилл Альгирдасович
  • Чекунов Юрий Борисович
  • Зимин Иван Иванович
  • Валов Михаил Владимирович
  • Вашкевич Вадим Петрович
RU2684877C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ КОСМИЧЕСКОГО АППАРАТА НЕГЕРМЕТИЧНОГО ИСПОЛНЕНИЯ С РАДИАЦИОННЫМ ОХЛАЖДЕНИЕМ И КОСМИЧЕСКИЙ АППАРАТ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Коротких Виктор Владимирович
RU2371361C2
КОСМИЧЕСКАЯ ПЛАТФОРМА 2016
  • Жуль Николай Сергеевич
  • Мошкин Игорь Дмитриевич
  • Шаклеин Пётр Алексеевич
  • Яковлев Андрей Викторович
  • Попов Василий Владимирович
  • Выгонский Юрий Григорьевич
  • Вашкевич Вадим Петрович
RU2688630C2

Реферат патента 2021 года КОСМИЧЕСКИЙ АППАРАТ

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла. Кроме того, КА включает систему электропитания с солнечными батареями, комплексом автоматики и стабилизации напряжения, аккумуляторными батареями. Имеется бортовой комплекс управления с бортовой вычислительной машиной. Между приборами подвода тепла и приборами сброса тепла системы терморегулирования введена микротурбина. К ней подключён электрогенератор, выходные клеммы которого с помощью кабеля соединены с комплексом автоматики и стабилизации напряжения системы электропитания. Достигается уменьшение массы КА.

Формула изобретения RU 2 749 928 C1

Космический аппарат, содержащий систему терморегулирования с приборами для отбора, подвода и сброса тепла, систему электропитания, включающую солнечные батареи, комплекс автоматики и стабилизации напряжения, аккумуляторные батареи с устройством их контроля, бортовой комплекс управления с бортовой вычислительной машиной, отличающийся тем, что между приборами подвода тепла и приборами сброса тепла системы терморегулирования введена микротурбина с подключённым к её ротору электрогенератором, выходные клеммы которого с помощью кабеля соединены с комплексом автоматики и стабилизации напряжения системы электропитания.

Документы, цитированные в отчете о поиске Патент 2021 года RU2749928C1

КОСМИЧЕСКИЙ АППАРАТ 2012
  • Коротких Виктор Владимирович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
RU2509691C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ПОЛЕВЫХ УСЛОВИЯХ 2013
  • Котельников Василий Иванович
RU2548992C2
СПОСОБ И УСТРОЙСТВО ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ 2010
  • Малютин Николай Васильевич
  • Межлумов Георгий Михайлович
RU2446362C2
СНИЖЕНИЕ СЕБЕСТОИМОСТИ МНОГОВАРИАНТНОЙ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ ПУТЕМ ИСПОЛЬЗОВАНИЯ НАИБОЛЕЕ ВЫГОДНОГО НА ДАННЫЙ МОМЕНТ ВАРИАНТА ВЫРАБОТКИ 2005
  • Перера Анил Ласанта Майкл
RU2376693C2
RU 2012158326 A, 10.07.2014
Электрохимический генератор 2015
  • Глухих Игорь Николаевич
RU2614242C1
US 7893390 B2, 22.02.2011.

RU 2 749 928 C1

Авторы

Шилкин Олег Валентинович

Вшивков Александр Юрьевич

Попугаев Михаил Михайлович

Синьковский Федор Константинович

Акчурин Владимир Петрович

Даты

2021-06-21Публикация

2020-05-13Подача