Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота (NO2). Изобретение может быть использовано для решения задач экологического контроля.
Известен датчик (детектор) по теплопроводности, действие которого основано на различии между теплопроводностью паров вещества и газа-носителя (Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высш. школа, 1987. - 287 с). Однако, чувствительность такого датчика (детектора) ограничивается на вещества с теплопроводностью, близкой к теплопроводности газа-носителя. Например, при использовании этого датчика для анализа диоксида азота точность определения невысока.
Известен также датчик (сенсор) диоксида азота, состоящий из подложки, выполненной из поликристаллического Al2O3, чувствительного слоя в виде тонкой пленки из нанокристаллического диоксида олова, в который дополнительно введены наночастицы оксида никеля и золота, и платиновых электродов (Патент RU№ 2464554 М. кл. G01N 27/12, опубл. 20.10.2012). Газовый сенсор для индикации диоксида азота/А.М. Гаськов, М.Н. Румянцева, 2012), позволяющий определять содержание диоксида азота с большей чувствительностью, но имеющий ряд недостатков.
Недостатками известного устройства являются низкая селективность по отношению к NO2 (проявляет чувствительность и к СО), сложность конструкции, относительно высокая (по сравнению с комнатной) рабочая температура (125-200 °С), использование драгоценных металлов (Au, Pt), длительность и трудоемкость (сложность) его изготовления: формирование пленки чувствительного элемента происходит в несколько стадий, включая получение геля оловянной кислоты, промывку и сушку, модификацию поверхности диоксида олова золотом и оксидом никеля, сушку и последующую прокалку в температурном режиме: 80°С - 24 ч., 120°С - 10 ч., 160°С - 10 ч., 200°С - 10 ч., 300°С - 10 ч. и 350°С - 24 ч., нанесение платиновых электродов. Осуществление такого способа изготовления газового сенсора, отличающегося многостадийностью технологических операций, сопряжено с большими временными затратами.
Ближайшим техническим решением к изобретению (прототипом) (патент RU №2437087, опубл.20.12.2011г.) является газовый датчик, состоящий из полупроводникового основания, выполненного из поликристаллической пленки антимонида индия, легированного сульфидом кадмия, и подложки, которой служит электродная площадка пьезокварцевого резонатора.
Недостатками такого устройства является его недостаточная чувствительность при контроле микропримесей диоксида азота. Кроме того, конструкция устройства предусматривает в процессе его изготовления разработки специальной технологии, режима, программы температурного контроля и сам процесс легирования антимонида индия; операции напыления металлических электродов и прямых трудоемких адсорбционных измерений.
Техническим результатом изобретения является создание датчика, характеризующегося повышенной чувствительностью и технологичностью его изготовления.
Указанный технический результат достигается тем, что в известном газовом датчике, содержащем полупроводниковое основание, нанесенное на электродную площадку пьезокварцевого резонатора, согласно изобретению, полупроводниковое основание выполнено в виде поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82 нанесенной на непроводящую подложку.
Сущность изобретения поясняется чертежом и таблицей, где представлены:
на фиг. 1 - конструкция заявляемого датчика;
на фиг. 2 - градуировочная кривая зависимости изменения pH изоэлектического состояния поверхности (∆pHизо) полупроводникового основания в процессе адсорбции при комнатной температуре от начального давления NO2 (PNO2);
в таблице - данные по влиянию диоксида азота на pH изоэлектрического состояния поверхности (∆pHизо) твердого раствора (InAs)0,18(CdTe)0,82.
Таблица демонстрирует заметное влияние диоксида азота на pHизо поверхности полупроводникового основания - поликристаллической пленки твердого раствора (InAs)0,18(CdTe)0,82, а градуировочная кривая наглядно указывает на высокую чувствительность полупроводникового основания к диоксиду азота.
Датчик состоит из полупроводникового основания 1, выполненного в виде поликристаллической пленки (InAs)0,18(CdTe)0,82, и непроводящей подложки 2 (фиг.1).
Принцип работы такого датчика основан на адсорбционно-десорбционных процессах, протекающих на полупроводниковой пленке, нанесенной на непроводящую подложку, и вызывающих изменение pH изоэлектрического состояния и, соответственно, силы активных центров ее поверхности.
Работа датчика осуществляется следующим образом.
Датчик помещают в находящуюся при комнатной температуре камеру (ею может быть обычная стеклянная трубка), через которую пропускают (или в которой выдерживают) анализируемый на содержание диоксида азота газ. При контакте пропускаемого газа с поверхностью полупроводниковой пленки (InAs)0,18(CdTe)0,82 происходит избирательная адсорбция молекул NO2 и изменение pH изоэлектрического состояния поверхности. С помощью градуировочных кривых можно определить содержание диоксида азота в исследуемой среде.
Из анализа приведенной на фиг. 2. типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость ∆pHизо от содержания диоксида азота (PNO2), следует: заявляемый датчик при существенном упрощении технологии его изготовления позволяет определять содержание диоксида азота с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. Существенное упрощение технологии изготовления датчика обусловлено исключением разработки специальной технологии, режима, программы температурного контроля, самого процесса легирования полупроводникового основания, а также исключением операций нанесения на полупроводниковое основание металлических электродов и трудоемких измерений адсорбции.
Малые габариты устройства (рабочий объем менее 0,2 см3) в сочетании с малой массой пленки - адсорбента позволяют снизить постоянную датчика по времени до 10-20 мс.
Конструкция заявляемого датчика позволяет также улучшить и другие характеристики: быстродействие, регенерируемость, способность работать не только в статическом, но и динамическом режиме.
Таблица
Значения pH изоэлектрического состояния поверхности твердого раствора (InAs)0,18(CdTe)0,82 при различных обработках
название | год | авторы | номер документа |
---|---|---|---|
Полупроводниковый датчик диоксида азота | 2021 |
|
RU2774643C1 |
ДАТЧИК ДИОКСИДА АЗОТА | 2020 |
|
RU2745943C1 |
Газоанализатор диоксида азота | 2019 |
|
RU2724290C1 |
Полупроводниковый датчик диоксида азота | 2019 |
|
RU2697920C1 |
ПОЛУПРОВОДНИКОВЫЙ АНАЛИЗАТОР ДИОКСИДА АЗОТА | 2014 |
|
RU2561019C1 |
ДАТЧИК УГАРНОГО ГАЗА | 2020 |
|
RU2733799C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ОКСИДА УГЛЕРОДА | 2019 |
|
RU2739146C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОАНАЛИЗАТОР | 2013 |
|
RU2526226C1 |
Датчик угарного газа | 2021 |
|
RU2760311C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОАНАЛИЗАТОР УГАРНОГО ГАЗА | 2014 |
|
RU2548049C1 |
Изобретение относится к области газового анализа, в частности к полупроводниковым датчикам диоксида азота. Полупроводниковый датчик диоксида азота содержит полупроводниковое основание, нанесенное на непроводящую подложку, при этом полупроводниковое основание выполнено из поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82. Техническим результатом является повышение чувствительности датчика. 2 ил., 1 табл.
Полупроводниковый датчик диоксида азота, содержащий полупроводниковое основание, нанесенное на непроводящую подложку, отличающийся тем, что полупроводниковое основание выполнено из поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82.
ГАЗОВЫЙ ДАТЧИК | 2008 |
|
RU2437087C2 |
ПОЛУПРОВОДНИКОВЫЙ АНАЛИЗАТОР ДИОКСИДА АЗОТА | 2014 |
|
RU2561019C1 |
ГАЗОВЫЙ СЕНСОР ДЛЯ ИНДИКАЦИИ ОКСИДОВ УГЛЕРОДА И АЗОТА | 2011 |
|
RU2464554C1 |
US 6306351 B1, 23.10.2001. |
Авторы
Даты
2021-07-05—Публикация
2020-12-25—Подача