Изобретение относится к способу этерификации и переэтерификации жирового сырья и может быть использовано для повышения качества как товарных, так и хранящихся дизельных топлив, а также для получения моторного биотоплива для дизельных двигателей.
Известен биокатализатор для переэтерификации жиров и способ его получения (патент РФ №2528778 МПК C12N 11/14, C12N 9/20, С11С 3/10, 11.11.2011), заключающийся в получении носителя аминированием гранулированного силикагеля или диоксида кремния дисперсностью 0,3-1,0 мм аминопропилтриэтоксисиланом, после чего его обрабатывают водным раствором глутарового альдегида или глиоксаля концентрацией 2,0 мас. % или 5,0 мас. % в течение 2 ч, а затем иммобилизуют на обработанном носителе путем рециркуляции через него раствора термостабильной липазы бактерий Geobacillus lituanicus в фосфатном буфере при температуре 0°С или 4°С при рН 6,5 в течение 12 ч и промывают полученный биокатализатор водным раствором трис(гидроксиметил)аминометана гидрохлорида.
Известен способ производства биодизеля (эфиров жирных кислот) путем переэтерификации растительных масел (патент РФ №2533419 МПК C10G 3/00, C10L 1/02, С11С 3/10, C12N 11/14, C12N 11/16, 05.09.2013), заключающийся в проведении переэтерификации при смешении растительного масла, спирта и катализатора и последующего выделения целевого продукта. На первой стадии переэтерификации в качестве катализатора используют сульфат железа (II), после чего отделяют сульфат железа и выпавший в осадок глицерол, смесь из спирта, масла и эфиров жирных кислот направляют на вторую стадию перэтерификации, на которой в качестве катализатора используют фермент - липазу, иммобилизованную на поверхности, после чего отделяют глицерол и ферментный катализатор, а смесь спирта и биодизеля направляют на стадию выделения целевого продукта.
Недостатки данного способа заключаются в необходимости использования двух стадий синтеза и двух различных типов катализатора, связанных с ними трудоемкостью процессов разделения компонентов реакции между стадиями, удаления катализатора после первой стадии, длительностью первой стадии.
Известен способ переэтерификации растительных масел путем алкоголиза (патент РФ №2425863 МПК С11В 3/00, 15.09.2009), заключающийся в том, что в реактор с ферромагнитными частицами вводят реагирующие вещества: растительное масло и раствор гидроксида калия (катализатора) в метиловом спирте, реакционную массу подвергают воздействию вращающегося электромагнитного поля со скоростью вращения от 15 до 50 с-1 и величиной магнитной индукции в пределах от 0,12 до 0,15 тесла. В качестве ферромагнитных частиц используют стальные цилиндры диаметром 1 мм и длиной от 10 до 15 мм, которые заполняют 1/5 часть объема рабочей камеры. Реакционную массу отстаивают, отделяют верхний эфирный слой, нейтрализуют раствором фосфорной кислоты, промывают водой. Получают смесь компонентов биодизельного топлива (метиловых эфиров высших алифатических кислот).
К недостаткам способа следует отнести высокую трудоемкость и энергоемкость осуществления процесса, повышенные требования к качеству исходного сырья по содержанию свободных жирных кислот, длительное время отстаивания и разделения продуктов.
Наиболее близким из известных способов к заявленному по достигаемому эффекту является способ переэтерификации растительного масла (патент РФ №2521343 МПК C10L 1/02, С11С 3/10, С07С 67/02, В04С 5/04, 27.06.2014, Бюл. №18), заключающийся в том, что в реактор вносят нагретое до 60°С растительное масло и метиловый спирт, в мольном соотношении 1:6, гидроксид калия, взятый в количестве 1-3% от объема масла, с последующим перемешиванием реакционной массы в вихревом устройстве за счет взаимодействия двух вихревых потоков, перемещающихся вдоль оси устройства навстречу друг другу.
К недостаткам известного способа следует отнести наличие нескольких длительных и энергоемких стадий процесса, в том числе отделения глицерина, очистку биодизеля от следов щелочного катализатора, повышенные требования к качеству исходного сырья, так как применение щелочного катализатора при повышенном содержании воды и свободных жирных кислот приводит к образованию мыла, которое уничтожает катализатор и уменьшает его эффективность, что в результате снижает превращение жиров в эфиры.
Задачей предлагаемого нами способа является интенсификация реакций этерификации свободных жирных кислот и переэтерификации триглицеридов жирового сырья, упрощение аппаратурного оформления, снижение экономических и энергетических затрат на его проведение при сохранении качества и выхода получаемого продукта.
Поставленная цель достигается тем, что в способе этерификации и переэтерификации жирового сырья, предусматривающим введение в реактор сырья, спирта и катализатора, с последующим перемешиванием реакционной массы в вихревом устройстве за счет взаимодействия двух вихревых потоков, перемещающихся вдоль оси устройства навстречу друг другу, согласно изобретению жировое сырье с кислотным числом до 20 мг KOH/г нагревают до 40-45°С при одновременной обработке ультразвуком с частотой 25-50 кГц и мощностью 300-500 Вт, затем загружают катализатор, в качестве которого используют иммобилизованную региоспецифичную липазу в количестве 0,5-1% от массы сырья в зависимости от исходного кислотного числа, после чего в реакционную смесь дозированно добавляют спирт из учета соотношения спирт/жир - 3:1-6:1 и проводят этерификацию и переэтерификацию в течение 60-120 минут до образования эфирной фазы, содержащей в своем составе β-моноацилглицерин. Реакции этерификации и переэтерификации растительных или животных жиров, например, с метиловым, этиловым или изопропиловым спиртами проводят при помощи вихревого устройства, которое интенсифицирует массообмен в смеси и преобразует кинетическую энергию движения потока во внутреннюю энергию. В качестве катализатора используют иммобилизованную региоспецифичную липазу, перед смешиванием компоненты активируют, подвергая ультразвуковой обработке. При наложении на жидкую среду ультразвукового воздействия часть затрачиваемой энергии инициирует разрыв межмолекулярных связей и усиление колебаний атомов в цепочках углеводородов, что способствует повышению реакционной способности, снижению энергии активации, интенсификации перемешивания реакционных компонентов. Ультразвуковая предварительная обработка липазы позволяет добиться увеличения степени конверсии в реакциях этерификации и переэтерификации за счет значительного морфологического изменения ферментов с возмущением третичной структуры и некоторым изменением микроокружения ароматических аминокислот. Это в конечном итоге и приводит к увеличению биокаталитической активности.
Для осуществления способа сырье (растительный или животный жир) нагревают до 40-45°С при одновременной обработке ультразвуком с частотой 25-50 кГц и мощностью 300-500 Вт. Затем загружают катализатор. В качестве катализатора используют иммобилизованную липазу в количестве 0,5-1% от массы сырья в зависимости от исходного кислотного числа. Липазу вводят в сырье при температуре 40-45°С, после чего в реакционную смесь дозированно добавляют спирт (в данном случае мы используем метиловый спирт) из учета соотношения спирт/жир - 3:1-6:1 и проводят реакции этерификации и переэтерификации в течение 60-120 минут. Иммобилизованная региоспецифичная липаза гидролизует сложноэфирные связи в молекуле триацилглицерина в положениях 1 и 3 (α-положениях). Реакция с остатком кислоты во втором (β-положении) не происходит из-за особенностей строения активного центра фермента. В результате исключается стадия получения и отделения глицерина, что увеличивает выход получаемого продукта, снижает количество отходов и сокращает число технологических стадий даже по сравнению с гетерогенным каталитическим синтезом, не говоря о синтезе с гомогенным щелочным катализатором. Образовавшуюся эфирную фазу с содержанием в ней β-моноацилглицерина можно направлять на смешивание с минеральным (нефтяным) дизельным топливом либо использовать в виде моторного биотоплива. Как видно из представленных в таблице данных, при высоком содержании β-моноацилглицерина, основные показатели полученного продукта находятся в пределах требований нормативов.
В ходе такого синтеза исключена стадия получения и отделения глицерина, дополнительно идет реакция этерификации свободных жирных кислот со спиртами с образованием эфиров, что увеличивает выход получаемого продукта, снижает количество отходов и сокращает число технологических стадий по сравнению с синтезом со щелочным катализатором.
Использование предлагаемого способа позволит интенсифицировать реакции этерификации и переэтерификации жирового сырья, снизить экономические и энергетические затраты на его проведение при сохранении качества и выхода получаемого продукта.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения биодизтоплива в среде сверхкритического диметилкарбоната | 2018 |
|
RU2676485C1 |
СПОСОБ ПРОИЗВОДСТВА БИОДИЗЕЛЯ | 2013 |
|
RU2533419C1 |
СПОСОБЫ ФЕРМЕНТАТИВНОЙ ПЕРЕЭТЕРИФИКАЦИИ/ЭТЕРИФИКАЦИИ, В КОТОРЫХ ИСПОЛЬЗОВАНЫ ЛИПАЗЫ, ИММОБИЛИЗОВАННЫЕ НА ГИДРОФОБНЫХ СМОЛАХ, В ПРИСУТСТВИИ ВОДНЫХ РАСТВОРОВ | 2011 |
|
RU2573929C9 |
СПОСОБ ОБРАБОТКИ РАСТИТЕЛЬНОГО МАСЛА | 2007 |
|
RU2365625C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА | 2006 |
|
RU2428460C2 |
Способ выделения жиромассы из сточных вод и её подготовки для производства биодизеля | 2020 |
|
RU2749371C1 |
СПОСОБЫ И СИСТЕМА ДЛЯ ФЕРМЕНТАТИВНОГО СИНТЕЗА СЛОЖНЫХ АЛКИЛЭФИРОВ ЖИРНЫХ КИСЛОТ | 2011 |
|
RU2600879C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ АЛКИЛЬНЫХ ЭФИРОВ ЖИРНЫХ КИСЛОТ | 2006 |
|
RU2412979C2 |
Способ получения сложных эфиров карбоновых кислот | 2022 |
|
RU2813102C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛКИЛОВЫХ ЭФИРОВ КАРБОНОВЫХ КИСЛОТ | 2006 |
|
RU2425024C2 |
Изобретение относится к способу этерификации и переэтерификации жирового сырья и может быть использовано для повышения качества как товарных, так и хранящихся дизельных топлив, а также для получения моторного биотоплива для дизельных двигателей. Способ этерификации и переэтерификации жирового сырья предусматривает введение в реактор сырья, спирта и катализатора, с последующим перемешиванием реакционной массы в вихревом устройстве за счет взаимодействия двух вихревых потоков, перемещающихся вдоль оси устройства навстречу друг другу. Жировое сырье с кислотным числом до 20 мг KOH/г нагревают до 40-45°С, обрабатывая ультразвуком с частотой 25-50 кГц и мощностью 300-500 Вт, загружают катализатор, в качестве которого используют иммобилизованную региоспецифичную липазу в количестве 0,5-1% от массы сырья в зависимости от исходного кислотного числа. В реакционную смесь дозированно добавляют спирт из учета соотношения спирт/жир - 3:1-6:1 и проводят этерификацию и переэтерификацию в течение 60-120 минут до образования эфирной фазы с содержанием в ней β-моноацилглицерина. Использование предлагаемого способа позволит интенсифицировать реакции этерификации и переэтерификации жирового сырья, снизить экономические и энергетические затраты на его проведение при сохранении качества и выхода получаемого продукта. 1 табл.
Способ этерификации и переэтерификации жирового сырья, предусматривающий введение в реактор сырья, спирта и катализатора, с последующим перемешиванием реакционной массы в вихревом устройстве за счет взаимодействия двух вихревых потоков, перемещающихся вдоль оси устройства навстречу друг другу, отличающийся тем, что жировое сырье с кислотным числом до 20 мгKОН/г нагревают до 40-45°С при одновременной обработке ультразвуком с частотой 25-50 кГц и мощностью 300-500 Вт, затем загружают катализатор, в качестве которого используют иммобилизованную региоспецифичную липазу в количестве 0,5 - 1% от массы сырья в зависимости от исходного кислотного числа, после чего в реакционную смесь дозированно добавляют спирт из учета соотношения спирт/жир - 3:1-6:1 и проводят этерификацию и переэтерификацию в течение 60-120 минут до образования эфирной фазы, содержащей в своем составе β-моноацилглицерин.
СПОСОБ ПЕРЕЭТЕРИФИКАЦИИ РАСТИТЕЛЬНОГО МАСЛА | 2013 |
|
RU2521343C1 |
СПОСОБ ПРОИЗВОДСТВА БИОДИЗЕЛЯ | 2013 |
|
RU2533419C1 |
БИОКАТАЛИЗАТОР ДЛЯ ПЕРЕЭТЕРИФИКАЦИИ ЖИРОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2011 |
|
RU2528778C2 |
СПОСОБ ПЕРЕЭТЕРИФИКАЦИИ РАСТИТЕЛЬНЫХ МАСЕЛ ПУТЕМ АЛКОГОЛИЗА | 2009 |
|
RU2425863C2 |
А.В | |||
Гарабаджиу и др | |||
"ОСНОВНЫЕ АСПЕКТЫ ИСПОЛЬЗОВАНИЯ ЛИПАЗ ДЛЯ ПОЛУЧЕНИЯ БИОДИЗЕЛЯ (ОБЗОР)", Санкт-Петербургский государственный технологический институт, 20.05.2010, найдено в Интернете |
Авторы
Даты
2021-07-15—Публикация
2020-07-29—Подача