СПОСОБ УДАЛЕНИЯ РАДИОАКТИВНОГО ЙОДА И ЕГО ИЗОТОПОВ ИЗ СИСТЕМЫ ЯДЕРНОГО РЕАКТОРА Российский патент 2021 года по МПК G21C1/24 

Описание патента на изобретение RU2755054C1

Предлагаемое изобретение относится к области атомных технологий удаления (нейтрализации) радиоактивного йода и его изотопов из системы ядерного реактора (ЯР), оснащенного системой каталитической утилизации радиолитического газа (СКР), и может быть использовано для создания способов обеспечения безопасной работы ЯР и очищения от изотопов йода.

Актуальность решаемой проблемы основана на необходимости удаления (нейтрализации) йода, - каталитического яда, образующегося при проведении облучательных экспериментов в топливном растворе растворных ЯР, оснащенных СКР. Изотопы йода могут существенно снизить технические характеристики СКР и, как следствие, способствовать нерегулируемому накоплению радиолитического газа (водород-кислородной смеси) в надтопливном пространстве ЯР с последующей его детонацией, способной привести к разгерметизации активной зоны ЯР и выходу опасных радиоактивных продуктов в окружающую среду.

Известен из уровня техники способ очистки отходящих газов от радиоактивного йода из газовых потоков (патент РФ №2414280 МПК B01D 53/02, публикация 20.03.2011), согласно которому очистку осуществляют путем взаимодействия йодосодержащих соединений с серебросодержащим реагентом с получением экологически-безопасных продуктов, в известном способе очистку осуществляют металлами, выбранных из ряда: Cu, Ag, Pd, Bi, Pt, Sn, или их сплавов с цинком, при 125-250°С.

Известный способ очистки отходящих газов от радиоактивного йода из газовых потоков обеспечивает фиксацию йода в форме труднорастворимых солей металлов, пригодных для формирования матрицы малого объема и длительного хранения.

К недостаткам известного способа относится невозможность его применения для обеспечения стабильной и безопасной работы растворных ЯР, оснащенных СКР, при проведении облучательных экспериментов.

Задачей авторов изобретения является разработка более эффективного способа удаления радиоактивного йода и его изотопов из системы ядерного реактора, оснащенного СКР и обеспечивающего стабильную и безопасную работу ЯР за счет очищения топливного раствора и поступающего из него радиолитического газа от йода.

Новый технический результат - обеспечение более стабильной и безопасной работы растворного ЯР, оснащенного СКР за счет очищения топливного раствора и поступающего из него радиолитического газа от йода.

В отличие от из известного способа, указанные задача и новый технический результат обеспечиваются тем, что, в топливный раствор ЯР помещают 0,50-1,00 г сульфата серебра в качестве реагента для взаимодействия с растворенным йодом с образованием твердых труднорастворимых продуктов в топливном растворе и сборе их в донной части ЯР, а в каталитический блок системы каталитической утилизации радиолитического газа ЯР помещают серебро-содержащий реагент для взаимодействия с йодом из газообразного потока, подаваемого в каталитический блок, на входе в который установлен сегмент с размещенными внутри керамическими гранулами, на поверхности которых, нанесен слой восстановленного серебра, при этом в процессе работы ЯР и СКР, снабженной системой охлаждения, для поддержания безопасного уровня соотношения компонентов водород-кислородной газовой смеси осуществляют ее принудительную циркуляцию из надтопливного пространства ЯР до каталитического блока СКР ЯР с последующим возвратом в надтопливное пространство ЯР по замкнутому контуру при давлении 0,7-1,2 атм. и при совместном охлаждении газового потока в межстеночном пространстве теплообменника в системе охлаждения до температуры не более 30°С.

Предлагаемый способ удаления радиоактивного йода и его изотопов из системы ядерного реактора, поясняется следующим образом.

При работе ЯР, оснащенного СКР, (при проведении облучательных экспериментов) в топливном растворе протекают ядерные реакции с образованием разнообразных изотопов, в том числе, изотопов йода: 127I, 129I, 131I, 132I, 131I и 135I, которые являются каталитическими ядами палладиевых и платиновых катализаторов, расположенных в каталитическом блоке СКР. Содержание изотопов йода зависит от типа топлива в ЯР, степени его выгорания и может варьироваться в широких пределах. Например, суммарная масса изотопов йода в топливном растворе ИЯР ВИР-2М при энерговыделении в активной зоне ~ 30 ГДж может составлять от 10-8 до 10-6 кг.

Выход изотопов йода в надтопливное пространство корпуса ЯР, оснащенного СКР, происходит, в основном, с радиолитическими пузырьками, содержащими радиолитический газ и пары воды. Вышедший из топливного раствора йод за счет принудительной конвекции парогазовой смеси, обеспечиваемый воздушным компрессором СКР, попадает в каталитический блок и приводит к снижению каталитических характеристик палладиевого катализатора - каталитическое «отравление». Отравление катализатора может существенно снизить эксплуатационные характеристики СКР и, как следствие, привести к самопроизвольному накоплению радиолитического газа в надтопливном пространстве ЯР и последующей детонацией, способной привести к разгерметизации активной зоны и выходу опасных радиоактивных продуктов в окружающую среду.

1 Удаление (нейтрализация) радиоактивного йода и его изотопов из топливного раствора системы ядерного реактора, оснащенного СКР, осуществляют за счет химического взаимодействия изотопов йода с ионами серебра, образовавшимися при диссоциации сульфата серебра.

Для химического взаимодействия изотопов йода в топливном растворе используют химический реагент - сульфат серебра, который при нормальных условиях, является малорастворимым порошком желтого цвета (1):

В топливный раствор ЯР добавляют 0,50-1,00 г сульфата серебра, при диссоциации которого, концентрация ионов серебра становится сопоставимой с суммарной концентрацией изотопов йода, образующихся в результате ядерных превращений в ЯР ВИР-2М за 30 лет его работы.

В топливном растворе ЯР изотопы йода взаимодействуют с ионами серебра с образованием йодида серебра, - малодиссоциирующего труднорастворимого осадка и осаждаются на дно корпуса ЯР (2) и не оказывают влияние на его облучательные эксперименты:

Восполнение концентрации ионов серебра в топливном растворе ЯР происходит за счет растворения оставшегося сульфата серебра.

2 Удаление (нейтрализация) радиоактивного йода и его изотопов из надтопливного пространства системы ядерного реактора, оснащенного СКР, осуществляется за счет химического взаимодействия изотопов йода с восстановленным металлическим серебром, размещенным на поверхности керамического субстрата, - гранул из оксидов алюминия, циркония, титана и др. (3):

Парогазовая смесь, содержащая изотопы йода, с помощью системы каталитической утилизации радиолитического газа (СКР) перемещается из топливного раствора в надтопливное пространство корпуса ЯР и далее в каталитический блок СКР, в котором, первый сегмент содержит восстановленное серебро на поверхности керамических гранул. При этом происходит захват (химическая адсорбция) изотопов йода из парогазовой фазы радиолиического газа с образованием труднорастворимого йодида серебра. После чего очищенный от изотопов йода радиолитический газ поступает в сегменты каталитического блока с платиновыми и/или палладиевыми катализаторами и не оказывает их каталитического отравления.

Представленный способ удаления (нейтрализации) радиоактивного йода и его изотопов из системы ядерного реактора позволяет обеспечить стабильную и безопасную работу растворных ЯР, оснащенных СКР.

Возможность промышленной реализации предлагаемого способа удаления радиоактивного йода и его изотопов из системы ядерного реактора, может быть подтверждена следующими примерами конкретного исполнения.

В лабораторных условиях заявляемый способ удаления радиоактивного йода и его изотопов из системы ядерного реактора, реализован на опытной модели:

Пример 1.

Проведена оценка степени каталитической конверсии водорода на гранулированном промышленном катализаторе К-ПГ (массой 20 г) в процессе окисления водородно-кислородной смеси, поступающей в газовый контур макета СКР со скоростью 0,5 дм3/мин через подкисленные модельные топливные растворы сульфата железа: рН = 1,0 и CFe = 68 г/дм3 в присутствии йода С1 = 32,5 мг/дм3 и сульфата серебра, массой 0,5 г в топливном растворе. Скорость циркуляции парогазовой смеси в газовом контуре макета СКР составляла 9 дм3/мин. Степень каталитической конверсии водорода составляла (97±1)% без тенденции к снижению при каталитическом окислении 1200 дм3 водорода - 60 ч непрерывной работы (Фиг. 1а).

Пример 2.

Проведена оценка степени каталитической конверсии водорода на гранулированном промышленном катализаторе К-ПГ (массой 20 г) в процессе окисления водородно-кислородной смеси, поступающей в газовый контур макета СКР со скоростью 0,5 дм3/мин через подкисленные модельные топливные растворы сульфата железа: рН = 1,0; CFe = 68 г/дм3 в присутствии йода С1 = 32,5 мг/дм3 и восстановленного серебра на поверхности керамических гранул оксида алюминия (диаметр гранул d = 0,5-0,8 мм, длина гранул l = 10 мм) в надтопливном пространстве макета СКР. Керамические гранулы оксида алюминия с восстановленным на их поверхности серебром устанавливали в первый сегмент каталитического блока. Скорость циркуляции парогазовой смеси в газовом контуре макета СКР составляла 9 дм3/мин. Степень каталитической конверсии водорода составляла от (97±1)% до (94±1)% при каталитическом окислении 1200 дм3 водорода - 60 ч непрерывной работы (Фиг. 1б).

Пример 3.

Проведена оценка степени каталитической конверсии водорода на гранулированном промышленном катализаторе К-ПГ (массой 20 г) в процессе окисления водородно-кислородной смеси, поступающей в газовый контур макета СКР со скоростью 0,5 дм3/мин через подкисленные модельные топливные растворы сульфата железа: рН = 1,0, CFe =68 г/дм3 в присутствии йода C1 = 32,5 мг/дм3, сульфата серебра в модельном топливном растворе и восстановленного серебра на поверхности керамических гранул оксида алюминия в надтопливном пространстве макета СКР. Керамические гранулы оксида алюминия с восстановленным на их поверхности серебром устанавливали в первый сегмент каталитического блока. Скорость циркуляции парогазовой смеси в газовом контуре макета СКР составляла 9 дм3/мин. Степень каталитической конверсии водорода составляла (97±1)% без тенденции к снижению при каталитическом окислении 1200 дм3 водорода - 60 ч непрерывной работы (Фиг. 1в).

В ходе проведения лабораторных экспериментов, в режиме онлайн, осуществлялся мониторинг измеряемых параметров водородсодержащей газовой среды для своевременной корректировки и поддержания их на безопасном уровне. Концентрация водорода в газовом контуре СКР до и после каталитического блока не превышала 4% объемных долей.

Результаты измерений в условиях данных примеров сведены в таблицу 1, из которой следует, что в течение времени проведения экспериментальных исследований (более двух месяцев непрерывной работы) все параметры преобразуемой водородсодержащей газовой среды были выдержаны на безопасном уровне.

Похожие патенты RU2755054C1

название год авторы номер документа
СПОСОБ ПРЕОБРАЗОВАНИЯ ВОДОРОДОСОДЕРЖАЩЕЙ СРЕДЫ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2020
  • Пикулев Алексей Александрович
  • Волгутов Валерий Юрьевич
  • Шлячков Николай Александрович
  • Глухов Леонид Юрьевич
  • Голубева Валентина Николаевна
  • Кубасов Антон Александрович
  • Юнин Денис Анатольевич
  • Дягель Антон Русланович
RU2748214C1
СПОСОБ РАДИАЦИОННОЙ ОБРАБОТКИ ИЗДЕЛИЙ И МАТЕРИАЛОВ ЖЕСТКИМ ГАММА-ИЗЛУЧЕНИЕМ 2004
  • Абалин Сергей Сергеевич
  • Павшук Владимир Александрович
  • Удовенко Александр Николаевич
  • Хвостионов Владимир Ермолаевич
  • Чувилин Дмитрий Юрьевич
RU2270488C2
ЯДЕРНЫЙ РАСТВОРНЫЙ РЕАКТОР 2015
  • Сенявин Александр Борисович
  • Кононов Юрий Николаевич
RU2580930C1
Способ комплексного контроля радионуклидов в выбросах ядерных энергетических установок 2018
  • Епимахов Виталий Николаевич
  • Олейник Михаил Сергеевич
  • Ильин Владимир Георгиевич
  • Саранча Олег Николаевич
RU2687842C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-89 2004
  • Меньшиков Леонид Иеронимович
  • Удовенко Александр Николаевич
  • Чувилин Дмитрий Юрьевич
RU2276817C2
СПОСОБ ВЫДЕЛЕНИЯ МОЛИБДЕНА-99 ИЗ ТОПЛИВА РАСТВОРНОГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Бродская Валерия Алексеевна
  • Будников Дмитрий Владимирович
  • Воронцов Сергей Владимирович
  • Глухов Леонид Юрьевич
  • Грачев Дмитрий Валерьевич
  • Гречушкин Владимир Борисович
  • Девяткин Андрей Александрович
  • Деманов Вячеслав Алексеевич
  • Есьман Александра Александровна
  • Завьялов Николай Валентинович
  • Карпунин Станислав Михайлович
  • Корнеева Ольга Владимировна
  • Костюков Валентин Ефимович
  • Крыжановский Алексей Александрович
  • Кузнецов Денис Дмитриевич
  • Максимов Михаил Юрьевич
  • Михайлов Евгений Николаевич
  • Мусин Игорь Зейнурович
  • Пикулев Алексей Александрович
  • Сажнов Владимир Васильевич
  • Смердов Вячеслав Иванович
  • Тарасов Сергей Владимирович
  • Федоренков Семен Владимирович
  • Шаравин Владислав Александрович
  • Уроженко Василий Викторович
  • Ледовский Сергей Федорович
  • Орлов Игорь Владимирович
  • Давыденко Антон Евгеньевич
  • Полинко Константин Николаевич
RU2716828C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-89 1999
  • Абалин С.С.
  • Верещагин Ю.И.
  • Григорьев Г.Ю.
  • Павшук В.А.
  • Пономарев-Степной Н.Н.
  • Хвостионов В.Е.
  • Чувилин Д.Ю.
RU2155399C1
ЯДЕРНЫЙ РАСТВОРНЫЙ РЕАКТОР 2015
  • Тимофеев Иван Дмитриевич
  • Силин Сергей Михайлович
  • Усачев Генрих Семенович
  • Женин Борис Алексеевич
RU2633712C2
СПОСОБ ИНТЕНСИФИКАЦИИ ТЕПЛОМАССООБМЕНА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2016
  • Балакирев Валерий Григорьевич
RU2631120C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-89 2004
  • Абалин Сергей Сергеевич
  • Павшук Владимир Александрович
  • Удовенко Александр Николаевич
  • Хвостионов Владимир Ермолаевич
  • Чувилин Дмитрий Юрьевич
RU2276816C2

Иллюстрации к изобретению RU 2 755 054 C1

Реферат патента 2021 года СПОСОБ УДАЛЕНИЯ РАДИОАКТИВНОГО ЙОДА И ЕГО ИЗОТОПОВ ИЗ СИСТЕМЫ ЯДЕРНОГО РЕАКТОРА

Изобретение относится к области атомных технологий удаления (нейтрализации) радиоактивного йода и его изотопов из системы ядерного реактора (ЯР), оснащенного системой каталитической утилизации радиолитического газа (СКР). В топливный раствор помещают 0,50-1,00 г сульфата серебра в качестве реагента для взаимодействия с растворенным йодом с образованием твердых труднорастворимых продуктов в топливном растворе и сборе их в донной части ЯР. В каталитический блок системы каталитической утилизации радиолитического газа (СКР) ЯР помещают серебросодержащий реагент для взаимодействия с йодом из газообразного потока, подаваемого в каталитический блок, на входе в который установлен сегмент с размещенными внутри керамическими гранулами, на поверхности которых нанесен слой восстановленного серебра. Для поддержания безопасного уровня соотношения компонентов водород-кислородной газовой смеси осуществляют ее принудительную циркуляцию из надтопливного пространства ЯР до каталитического блока СКР ЯР с последующим возвратом в надтопливное пространство ЯР по замкнутому контуру при давлении 0,7-1,2 атм и при совместном охлаждении газового потока в межстеночном пространстве теплообменника в системе охлаждения до температуры не более 30°С. Изобретение обеспечивает более стабильную и безопасную работу растворного ЯР, оснащенного СКР. 1 ил., 1 табл.

Формула изобретения RU 2 755 054 C1

Способ удаления радиоактивного йода и его изотопов из системы ядерного реактора (ЯР) путем взаимодействия серебросодержащих реагентов с йодом с получением безопасных продуктов, отличающийся тем, что в топливный раствор помещают 0,50-1,00 г сульфата серебра в качестве реагента для взаимодействия с растворенным йодом с образованием твердых труднорастворимых продуктов в топливном растворе и сборе их в донной части ЯР, а в каталитический блок системы каталитической утилизации радиологического газа (СКР) ЯР помещают серебросодержащий реагент для взаимодействия с йодом из газообразного потока, подаваемого в каталитический блок, на входе в который установлен сегмент с размещенными внутри керамическими гранулами, на поверхности которых нанесен слой восстановленного серебра, при этом в процессе работы ЯР и СКР, снабженной системой охлаждения, для поддержания безопасного уровня соотношения компонентов водород-кислородной газовой смеси осуществляют ее принудительную циркуляцию из надтопливного пространства ЯР до каталитического блока СКР ЯР с последующим возвратом в надтопливное пространство ЯР по замкнутому контуру при давлении 0,7-1,2 атм и при совместном охлаждении газового потока в межстеночном пространстве теплообменника в системе охлаждения до температуры не более 30°С.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755054C1

СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ ЙОДА 2009
  • Металиди Михаил Михайлович
  • Колядин Анатолий Борисович
  • Безносюк Василий Иванович
  • Федоров Юрий Степанович
RU2414280C1
Способ комплексного контроля радионуклидов в выбросах ядерных энергетических установок 2018
  • Епимахов Виталий Николаевич
  • Олейник Михаил Сергеевич
  • Ильин Владимир Георгиевич
  • Саранча Олег Николаевич
RU2687842C1
ХИМИЧЕСКАЯ ОПТИМИЗАЦИЯ В ЯДЕРНОМ РЕАКТОРЕ НА РАСПЛАВЛЕННЫХ СОЛЯХ 2015
  • Скотт Айан Ричард
RU2666787C2
US 9659673 B2, 23.05.2017.

RU 2 755 054 C1

Авторы

Пикулев Алексей Александрович

Волгутов Валерий Юрьевич

Шлячков Николай Александрович

Беспалова Елена Николаевна

Голубева Валентина Николаевна

Круглых Наталия Сергеевна

Юнин Денис Анатольевич

Даты

2021-09-14Публикация

2021-03-22Подача