Способ извлечения высокодисперсного гидроксида титана (IV) из водных растворов Российский патент 2021 года по МПК C02F1/465 C01G23/04 C02F101/10 

Описание патента на изобретение RU2755300C1

Изобретение относится к области химической промышленности и охраны окружающей среды и может быть использовано для очистки сточных вод, содержащих гидроксид титана (IV).

Известен способ извлечения продуктов гидролиза четыреххлористого титана из техногенных стоков, при котором электрофлотационный процесс ведут при рН 2-3 в присутствии анионного ПАВ. (Мешалкин В.П., Колесников А.В., Савельев Д.С., Колесников В. А., Белозерский А.Ю., Меньшова И.И., Маслянникова Д.В., Сычева О.В. Анализ физико-химической эффективности электрофлотационного процесса извлечения продуктов гидролиза четыреххлористого титана из техногенных стоков. // Доклады Академии Наук. 2019. Том 486, №6. - С. 680-684.). Недостатком метода являются длительность процесса 10 -20 минут и недостаточно высокая степень извлечения высокодисперсного гидроксида титана, составляющая 95%.

Наиболее близким по техническому решению является способ электрофлотационного извлечения высокодисперсного диоксида титана (TiO2). (Колесников А.В., Савельев Д.С., Колесников В.А., Давыдкова Т.В. Электрофлотационное извлечение высокодисперсного диоксида титана (TiO2) из водных растворов электролитов. // Стекло и керамика. 2018. Том 6. - С. 32-36.). Процесс ведут в присутствии анионного поверхностно-активного вещества и коагулянта, при этом достигается степень извлечения гидроксида титана (IV), составляющая 98-99%. Недостатком метода является ограничение по исходным концентрациям гидроксида титана (IV) в очищаемых стоках, она не превышает 50 мг/л. Этот способ выбран за прототип.

Технической задачей предлагаемого изобретения является расширение диапазона исходных концентраций гидроксида титана (IV) при сохранении высокой степени извлечения дисперсной фазы гидроксида титана (IV).

Поставленная задача решается тем, что в очищаемую воду, содержащую гидроксид титана (IV), вводят анионное поверхностно-активное вещество додецилсульфат натрия, коагулянт гидроксид железа (III), катионный флокулянт на основе полиакриламида при массовом соотношении гидроксида титана (IV) к введенным веществам [1]:[0,02-0,08]:[0,02-0,08]:[0,05-0,1], с последующим электрофлотационным извлечением из сточной воды образовавшихся соединений при pH 2,5-3,0, плотности тока 0,4 А/л в течение 10 мин.

В присутствии флокулянта и коагулянта происходит увеличение размеров взвешенных частиц за счет их слипания и образования агломератов. Данный эффект значительно повышает верхний предел исходной концентрации, к тому же способствует более эффективному захвату агломератов газовыми пузырьками и образованию устойчивых комплексов агломераты частиц - пузырьки газов, что приводит к увеличению скорости электрофлотационного процесса очистки.

Извлечение гидроксида титана (IV) из водных растворов осуществлялось в непроточном электрофлотаторе с нерастворимыми металл- оксидными анодами. Исследования проводились в диапазоне концентраций по ионам металла от 10 до 300 мг/л при комнатной температуре (20±2°С). В качестве фонового электролита, позволяющего повысить электропроводность, использовали раствор NaCl с концентрацией 1 г/л. Массовую концентрацию ионов титана (IV) измеряли по стандартизованной методике на масс-спектрометре с индуктивно связанной плазмой.

Изобретение иллюстрируется следующими примерами.

Пример 1. В 1 л воды, содержащей 10 мг гидроксид титана (IV), вводят при перемешивании анионное поверхностно-активное вещество додецилсульфат натрия, коагулянт гидроксид железа (III), катионный флокулянт на основе полиакриламида при массовом соотношении гидроксида титана (IV) к введенным веществам [1]:[0,05]:[0,05]:[0,05-0,1]. Раствор при pH 2,5-3,0 перемешивают в течение 0,5 минут и подают в электрофлотационный аппарат для отделения образовавшихся частиц от очищаемой воды при плотности тока 0,4 А/л. Процесс электрофлотации ведут в течение 10 мин. После электрофлотации отбирают пробу вод на анализ и определяют содержание ионов титана (IV).

Пример 2. В 1 л воды, содержащей 300 мг гидроксида титана (IV), вводят при перемешивании анионное поверхностно-активное вещество додецилсульфат натрия, коагулянт гидроксид железа (III), катионный флокулянт на основе полиакриламида при массовом соотношении гидроксида титана (IV) к введенным веществам [1]:[0,02-0,08]:[0,02-0,08]:[0,05-0,1]. Раствор при pH 2,5-3,0 перемешивают в течение 0,5 минут и подают в электрофлотационный аппарат для отделения образовавшихся частиц от очищаемой воды при плотности тока 0,4 А/л. Процесс электрофлотации ведут в течение 10 мин. После электрофлотации отбирают пробу вод на анализ и определяют содержание ионов титана (IV).

Для сравнения эффективности известного и предлагаемого способов проводилась очистка сточных вод с использованием одной и той же системы электродов, конструкции электрофлотатора, плотности тока, pH среды. Полученные результаты представлены в таблице 1.

Как видно из таблицы 1, способ позволяет расширить диапазон исходных концентраций ионов гидроксида титана (IV) до 10 - 300 мг/л, при сохранении степени извлечения гидроксида титана (IV), составляющей 98-99%.

Похожие патенты RU2755300C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ ЦЕРИЯ (IV) ИЗ ВОДНЫХ РАСТВОРОВ 2015
  • Колесников Артем Владимирович
  • Гайдукова Анастасия Михайловна
  • Бродский Владимир Александрович
  • Колесников Владимир Александрович
  • Перфильева Анна Владимировна
RU2610864C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ГИДРОКСИДА МЕДИ ИЗ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ МЕДНО-АММИАЧНЫЙ КОМПЛЕКС 2022
  • Бродский Владимир Александрович
  • Малькова Юлия Олеговна
  • Перфильева Анна Владимировна
  • Максимов Иван Сергеевич
RU2793614C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ТРУДНОРАСТВОРИМЫХ СОЕДИНЕНИЙ МЕДИ ИЗ АММИАЧНЫХ СИСТЕМ 2022
  • Бродский Владимир Александрович
  • Перфильева Анна Владимировна
  • Яворский Александр Русланович
  • Иншакова Ксения Александровна
RU2793617C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННГО ИЗВЛЕЧЕНИЯ ЛАКОКРАСОЧНЫХ МАТЕРИАЛОВ 2022
  • Колесников Артем Владимирович
  • Перфильева Анна Владимировна
  • Колесникова Ольга Юрьевна
  • Крючкова Лариса Анатольевна
RU2799645C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ЦВЕТНЫХ И ТЯЖЕЛЫХ МЕТАЛЛОВ 2008
  • Ильин Валерий Иванович
  • Колесников Владимир Александрович
RU2363665C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ ИЗ СТОЧНЫХ ВОД 2018
  • Колесников Артем Владимирович
  • Милютина Алена Дмитриевна
  • Перфильева Анна Владимировна
  • Колесников Владимир Александрович
RU2688532C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ КАТИОННОГО ПОВЕРХНОСТНО-АКТИВНОГО ВЕЩЕСТВА ТЕТРАДЕЦИЛТРИМЕТИЛАММОНИЙ БРОМИДА ИЗ СТОЧНЫХ ВОД 2013
  • Воробьева Ольга Ивановна
  • Бондарева Галина Михайловна
  • Колесников Артем Владимирович
  • Перфильева Анна Владимировна
RU2542289C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ЦВЕТНЫХ МЕТАЛЛОВ 2010
  • Ильин Валерий Иванович
  • Колесников Владимир Александрович
  • Перфильева Анна Владимировна
RU2445273C1
СПОСОБ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ПОРОШКОВЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ ИЗ ВОДНЫХ РАСТВОРОВ 2023
  • Гайдукова Анастасия Михайловна
  • Стоянова Алёна Дмитриевна
  • Похвалитова Анастасия Александровна
RU2802034C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ПРОИЗВОДСТВА ПЕЧАТНЫХ ПЛАТ, СОДЕРЖАЩИХ ФОТОРЕЗИСТ СПФ-ВЩ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2022
  • Ваграмян Тигран Ашотович
  • Григорян Неля Сетраковна
  • Абрашов Алексей Александрович
  • Аснис Наум Аронович
  • Бродский Владимир Александрович
RU2805410C1

Реферат патента 2021 года Способ извлечения высокодисперсного гидроксида титана (IV) из водных растворов

Изобретение может быть использовано при очистке сточных вод, содержащих гидроксид титана (IV). Способ извлечения гидроксида титана (IV) из водного раствора включает введение перед электрофлотацией с нерастворимыми анодами в очищаемую воду анионного поверхностно-активного вещества додецилсульфата натрия, коагулянта гидроксида железа (III). Массовое соотношение извлекаемого гидроксида титана (IV) к додецилсульфату натрия и коагулянту составляет [1]:[0,02-0,08]:[0,02-0,08]. В очищаемую воду дополнительно вводят катионный флокулянт на основе полиакриламида при массовом соотношении гидроксида титана (IV) к флокулянту [1]:[0,05-0,1]. Электрофлотацию осуществляют при рН 2,5-3,0, объемной плотности тока 0,4 А/л в течение 10 мин. Изобретение позволяет расширить диапазон исходных концентраций ионов гидроксида титана (IV) в очищаемой воде до 10-300 мг/л при сохранении высокой степени извлечения гидроксида титана (IV), составляющей 98-99%. 1 табл., 2 пр.

Формула изобретения RU 2 755 300 C1

Способ извлечения гидроксида титана (IV) из водного раствора, включающий введение перед электрофлотацией с нерастворимыми анодами в очищаемую воду анионного поверхностно-активного вещества додецилсульфата натрия, коагулянта гидроксида железа (III) при массовом соотношении извлекаемого гидроксида титана (IV) к введенным додецилсульфату натрия и коагулянту [1]:[0,02-0,08]:[0,02-0,08], отличающийся тем, что в очищаемую воду дополнительно вводят катионный флокулянт на основе полиакриламида при массовом соотношении гидроксида титана (IV) к флокулянту [1]:[0,05-0,1], при этом электрофлотацию осуществляют при рН 2,5-3,0, плотности тока 0,4 А/л в течение 10 мин.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755300C1

КОЛЕСНИКОВ А.В
и др., Электрофлотационное извлечение высокодисперсного диоксида титана (TiO2) из водных растворов электролитов, Стекло и керамика, 2018, т
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Способ образования коричневых окрасок на волокне из кашу кубической и подобных производных кашевого ряда 1922
  • Вознесенский Н.Н.
SU32A1
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ КИСЛЫХ ТРАВИЛЬНЫХ РАСТВОРОВ, ОБРАЗУЮЩИХСЯ ПРИ ОБРАБОТКЕ ИЗДЕЛИЙ ИЗ ТИТАНА 2015
  • Быковский Николай Алексеевич
  • Низов Василий Александрович
  • Фанакова Надежда Николаевна
RU2596564C1
СПОСОБ УТИЛИЗАЦИИ И ОБЕЗВРЕЖИВАНИЯ ОТХОДОВ ТРАВЛЕНИЯ ТИТАНОВОГО ПРОИЗВОДСТВА 2000
  • Трубин А.Н.
  • Гиль Г.И.
RU2176288C1
JP S6154281 A, 18.03.1986
JP S5870878 A, 27.04.1983
JP 2001347261 A, 18.12.2001
МЕШАЛКИН В.П
и др., Анализ

RU 2 755 300 C1

Авторы

Колесников Владимир Александрович

Колесников Артем Владимирович

Перфильева Анна Владимировна

Давыдкова Татьяна Валерьевна

Бродский Владимир Александрович

Даты

2021-09-15Публикация

2020-10-21Подача