Предлагаемое изобретение относится к теплоэнергетике и может быть использовано как теплогенерирующая установка для совместного получения водяного пара и нагрева сетевой воды в системах теплоснабжения.
Известен контактный парогенератор, содержащий топку, состоящую из корпуса, внутри которого по окружности помещены экранные трубы, соединенные с верхним кольцевым коллектором, снабженным патрубком выхода питательной воды и нижним кольцевым коллектором, снабженным патрубком входа питательной воды, осесимметично которому устроена горелка, причем экранные трубы и корпус выгнуты таким образом, что полость образованная экранными трубами повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелке, эжектор, циклон и питательный насос, при этом топка соединена своим выходным отверстием, образованным кольцом верхнего коллектора с приемной камерой эжектора, диффузор которого соединен с тангенциальным патрубком циклона, патрубок выхода обратной воды которого соединен через трубопровод обратной воды, трубопровод питательной воды и питательный насос с патрубком входа питательной воды в нижний коллектор топки, а патрубок выхода горячей воды из верхнего коллектора соединен трубопроводом с соплом эжектора [Патент РФ № №2383815, МПК F 22 В 27/00, 2010].
Основными недостатками известного контактного парогенератора являются исполнение экранного пучка труб топки в виде одиночного факела, что создает опасность перегрева верхней зоны экранного пучка, снижает надежность и ограничивает производительность, необходимость для проведения процесса горения чистого водорода и кислорода, для чего требуется наличие источников этих компонентов, получение теплоносителя только в виде водяного пара, что ограничивает диапазон его использования, значительно увеличивает стоимость полученного теплоносителя и таким образом, снижает его эффективность.
Более близким к предлагаемому изобретению является комплексная котельная установка, содержащая контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, экранные трубы и корпус топки выгнуты таким образом, что нижняя зона полости образованная экранными трубами повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелках, а верхняя часть экранных труб и корпуса топки направлены вертикально вверх, эжектор, приемная камера которого соединена снизу с топкой, а диффузор соединен на выходе с циклоном, корпус которого снабжен входным тангенциальным патрубком, патрубками отвода парогазовой смеси и конденсата, соответственно, внутри которого помещена центральная труба, соединенная с патрубком выхода пара, причем патрубок отвода парогазовой смеси соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего, из расположенных сверху–вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионно-устойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через паровые каналы сверху–вниз с газовым коллектором и пирамидальным днищем, снабженными газовым и конденсатным патрубками, а водные каналы соединены справа и слева с пирамидальными входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, газовый и конденсатный патрубки соединены с корпусом дегазатора, снабженного конденсатным патрубком, патрубком входа конденсата, патрубком входа влажного газа, соединенного с перфорированным распределителем, каплеотбойником и патрубком выхода очищенных газов, соединенным с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком [Патент РФ № №2705528, МПК F 22 В 27/00, 2019].
Основными недостатками известной комплексной котельной установки являются невозможность получения перегретого пара, обусловленное отсутствием пароперегревателя в парогенераторе, недостаточный температурный напор в пластинчатом конденсаторе, обусловленная перекрестным ходом теплоносителей в нем, наличие в уходящих дымовых газах существенного количества оксидов азота и оксидов углерода, обусловленное отсутствием установки очистки от этих примесей, что ограничивает диапазон использования полученного пара, снижает эффективность процесса конденсации, ухудшает экологические характеристики установки и, таким образом, снижает ее экономическую и экологическую эффективность.
Техническим результатом предлагаемого изобретения является повышение экономической и экологической эффективности комплексной теплогенерирующей установки.
Технический результат достигается комплексной теплогенерирующей установкой, содержащей контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, сверху корпус топки соединен с конвекционным газоходом, в котором размещен пароперегреватель, сам конвекционный газоход соединен сверху с приемной камерой эжектора, входной патрубок которого соединен с патрубком питательной воды, а диффузор соединен с циклоном, патрубок выхода пара которого соединен, в свою очередь, с пароперегревателем, патрубок отвода парогазовой смеси соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего, из расположенных сверху–вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионно-устойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через парогазовые каналы сверху–вниз с газовым коллектором и пирамидальным днищем, снабженными газовым патрубком, перед которым установлен каплеотбойник и конденсатным патрубком, соответственно, а водные каналы соединены справа снизу и слева сверху с входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, соответственно, газовый патрубок соединен с корпусом адсорбера, снабженного патрубками входа и выхода очищенного газа, патрубками входа и выхода промывочной воды, причем в полости адсорбера сверху–вниз расположены каплеотбойник, ороситель, соединенный с патрубком входа промывочной воды и, в шахматном порядке, перфорированные корзины, заполненные гранулированным доменным шлаком, а патрубок выхода очищенных газов, соединен с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком.
На фиг. 1 представлена принципиальная схема предлагаемой комплексной теплогенерирующей установки (КТГУ), на фиг. 2–5 – разрезы пластинчатого конденсатора.
КТГУ содержит контактный парогенератор 1, состоящий из корпуса топки 2, внутри которого по эллиптическому периметру помещены экранные трубы 3, соединенные с верхним эллиптическим коллектором 4, снабженным патрубком выхода питательной воды 5 и нижним эллиптическим коллектором 6, снабженным патрубком входа питательной воды 7, соединенным с питательным насосом 8, внутри нижнего эллиптического коллектора 6 осесимметрично ему расположены горелки (на фиг. 1–5 не показаны), сверху корпус топки 2 соединен с конвекционным газоходом 9, в котором размещен пароперегреватель 10, сам конвекционный газоход 9 соединен сверху с эжектором 11, состоящим из приемной камеры 12 с патрубком 13 и соплом 14, соединенными с патрубком выхода питательной воды 5, смесительной камеры 15 и диффузора 16, приемная камера 12 эжектора 11 соединена снизу с топкой 2 через конвекционный газоход 9, а диффузор 16 с циклоном 17, корпус которого снабжен входным тангенциальным патрубком 18, патрубками отвода парогазовой смеси 19 и конденсата 20, соответственно, внутри которого помещена центральная труба 21, соединенная с патрубком выхода пара 22, соединенного, в свою очередь, с пароперегревателем 10, причем патрубок отвода парогазовой смеси 19 соединен с прямоугольным корпусом пластинчатого конденсатора 23, состоящего, из расположенных сверху–вниз пирамидального парогазового коллектора 24, снабженного парогазовым патрубком 25, соединенного снизу с теплообменным коробом 26, в котором устроены вертикальные теплообменные перегородки 27, выполненные из коррозионно-устойчивого материала (например, из армированного малощелочного стекла), образующие вертикальные парогазовые 28 и горизонтальные водные каналы 29, причем парогазовый коллектор 24 соединен через парогазовые каналы 28 сверху–вниз с газовым коллектором 30 и пирамидальным днищем 31, снабженными газовым патрубком 32, перед которым установлен каплеотбойник 33 и конденсатным патрубком 34, соответственно, а водные каналы 29 соединены справа снизу и слева сверху с входным и выходным водяными коллекторами 35 и 36, соединенными с входным и выходным патрубками сетевой воды 37 и 38, соответственно, газовый патрубок 32 соединен с корпусом адсорбера 39, снабженного патрубками входа и выхода очищенного газа 40 и 41, патрубками входа и выхода промывочной воды 42 и 43, причем в полости адсорбера сверху–вниз расположены каплеотбойник 44, ороситель 45, соединенный с патрубком входа промывочной воды 42 и в шахматном порядке перфорированные корзины 46, заполненные гранулированным доменным шлаком 47, а патрубок выхода очищенных газов 41, соединен с вентилятором высокого давления 48, напорный патрубок которого снабжен коническим насадком 49.
КТГУ работает следующим образом. Питательный насос 8, создающий высокое давление Р1, через патрубок 7 и нижний эллиптический коллектор 6 подает питательную воду в экранные трубы 3, которые равномерно обогреваются от факелов из горелок (на фиг. 1–5 не показаны) Из экранных труб вода, нагретая до температуры кипения, поступает в верхний эллиптический коллектор 4, откуда через патрубок 5 и соединенный с ним патрубок 13 эжектора 11, из сопла 14 струя питательной воды, нагретая до температуры кипения Т1 при давлении Р1 с большой скоростью, попадает в смесительную камеру 14, создавая в приемной камере 11 разрежение. В результате созданного разрежения продукты сгорания топлива (например, полученные при сгорании природного газа или мазута: оксиды углерода, оксиды азота, пары воды) при давлении Р0 и высокой температуре ТТ из топки 2 попадают в приемную камеру 11 и далее в смесительную камеру 14. В смесительной камере 14 давление воды снижается от Р1 до Р2, а давление дымовых газов, наоборот, повышается от Р0 до Р2, питательная вода смешивается и контактирует с продуктами сгорания из топки 2, интенсивно испаряясь, в результате снижения давления до Р2 и скоростного теплообмена с продуктами сгорания, а образовавшаяся парогазовая смесь при давлении Р2 и температуре Т2 поступает в диффузор 16. В диффузоре 15 динамическое давление струи пара трансформируется в статическое, в результате чего давление паровоздушной смеси на выходе из диффузора 15 поднимается от Р2 до Р3, величина которого несколько меньше, чем Р1, но значительно больше чем Р2 и Р0 [В. В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с. 68]. Полученная парогазовая смесь через тангенциальный патрубок 18 поступает в циклон 17, где в результате вращения и воздействия центробежных сил на парогазовую смесь происходит ее деление на практически чистый насыщенный водяной пар с давлением Рп и температурой Тп, собирающийся в верхней и средней зонах полости корпуса циклона 17, парогазовую смесь, которая за счет большей плотности составляющих ее газов собирается в нижней зоне полости корпуса циклона 17 и конденсат, который стекает в поддон циклона 17. В соответствии с этим водяной пар отбирается через центральную трубу 21 из патрубка 22 и поступает в пароперегреватель 10, из конденсатного патрубка 20 отводится конденсат на ХВО, а из патрубка 19 выводится парогазовая смесь в пластинчатый конденсатор 23, выполненный из коррозионно-устойчивого материала. В конденсаторе 23 парогазовая смесь, перемещаясь сверху–вниз, отдает тепло при конденсации водяных паров, охлаждаясь при нагреве через перегородки 27 обратной сетевой водой, движущейся снизу–вверх в противотоке, которая через патрубок 38 подается потребителю. Одновременно, в конденсаторе 23 при конденсации паров воды, снижении температуры и давления парогазовой смеси от Т2 и Р3 до ТК и РК (температура ТК ниже точки росы) происходит окисление монооксидов азота до диоксидов и поглощение диоксидов азота и частично диоксида углерода образовавшимся конденсатом. При этом несконденсировавшиеся газы из парогазовой смеси (N2, СО2 и др.), в результате своей большей плотности по сравнению с парами воды, собираются в газовом коллекторе 30, откуда проходя через каплеотбойник 33, газ очищается от капель конденсата и через патрубки 32 и 40 поступает в адсорбер 39, а образовавшийся конденсат, насыщенный кислыми компонентами, стекает в поддон 31, откуда через патрубок 34 подается на ХВО. В адсорбере 39 газ проходит поочередно через перфорированные корзины 46, заполненные гранулированным доменным шлаком 47, в которых за счет основных свойств доменного шлака, происходит адсорбция его компонентов, которые обладают кислыми свойствами (оксиды азота, оксиды углерода, оксиды серы), в результате чего газ очищается от вредных примесей, далее освобождается от уносимых капель конденсата в каплеотбойнике 44 и через патрубок 41 с давлением Р4 близким к атмосферному поступают на всас вентилятора высокого давления 48, снабженного коническим насадком 49 и расположенного на верхней отметке (например, на крыше котельной). Из вентилятора 48 очищенные и охлажденные дымовые газы с давлением РВ и температурой Т4 через конический насадок 49 выбрасываются в виде факела в атмосферу. Параллельно этому процессу насыщенный водяной пар с давлением Рп и температурой Тп из циклона 17 поступает в пароперегреватель 10, где происходит его нагрев до температуры Тпп значительно более высокой, чем Тп, после чего перегретый пар подается потребителю.
При падении активности адсорбента–гранулированного доменного шлака 47 его подвергают регенерации, которую осуществляют по мере необходимости. Процесс регенерации заключается в очистке поверхности и пор гранул шлака 47 от мелкодисперсных частиц и адсорбированных молекул вредных примесей и осуществляется путем их промывки промывочной водой (или очищенным конденсатом) из оросителя 45. Обратная промывочная вода, насыщенная кислотными компонентами и СО2, выводится из адсорбера 39 через патрубок выхода промывочной воды 43, откуда подается на ХВО. При механическом износе гранул шлака 47 его заменяют на свежий. Периодичность и продолжительность промывки, время замены адсорбента определяются опытным путем.
Количество и параметры пара, получаемого в контактном парогенераторе 1 с учетом его перегрева в пароперегревателе 10, сетевой воды нагреваемой в пластинчатом конденсаторе 23, степень очистки дымовых газов после адсорбера 39 зависят от вида топлива, количества и давления воды на выходе из сопла 14, создаваемого питательным насосом 8, теплопроизводительности и количества горелок (на фиг. 1–5 не показаны, площади поверхности экранных труб 2, теплового напряжения в топке 2, технологических параметров эжектора 11 и циклона 17. Так как в эжекторе 11 происходит смешение газообразных продуктов сгорания с питательной водой, в них присутствуют пары питательной воды и пары воды, образовавшейся при сжигании топлива. Поэтому при конденсации образовавшейся парогазовой смеси в конденсаторе 23 при противоточном движении парогазовой смеси и сетевой воды увеличивается температурный напор, интенсифицируется процесс теплопередачи [А. А. Щукин и др. Теплотехника – М.: Металлургия, 1973, с. 203]. В результате вышеперечисленных факторов образуется количество конденсата большее, чем поступило питательной воды на величину конденсата от паров воды, образовавшейся при сжигании топлива, что обеспечивает повышение КПД, создает замкнутый цикл водоснабжения КТГУ и снижает выбросы вредных компонентов и парниковых газов в атмосферу. Кроме того, использование доменного шлака в качестве адсорбента для очистки дымовых газов позволяет значительно снизить выбросы вредных веществ в атмосферу при минимальных затратах на процесс очистки. Сам гранулированный доменный шлак представляет собой мелкозернистый материал в виде пористых стекловидных или кристаллических гранул со средним размером (2-8) и более мм. Плотность шлака, в зависимости от состава, составляет 2,8-3,0 г/см3, твёрдость зёрен 5-8 кгс/см2. Химический состав шлака, в зависимости от состава исходной руды и вида выплавляемого чугуна, изменяется в широких пределах: СаО – 30-49%; АL2О3 – 4,5-20%; SiO2 – 33-44%; Fe2O3 – 0.3-0.8%; MgO – 1.5-15%; MnO – 0.3-3.0%. Основные характеристики доменного шлака: пористость, основность, гидравлические свойства, активность [ГОСТ 3476-74 Шлаки доменные и электротермофосфатные гранулированные для производства цементов. - М.: ИПК Изд-во стандартов, 1976. - с.5]. Так как удаляемые из дымовых газов вредные примеси (NOx, COх и пр.) имеют кислые свойства, для процесса очистки дымовых газов используется доменный шлак с модулем основности М>1.
Таким образом, предлагаемая комплексная теплогенерирующая установка обеспечивает получение пара и горячей воды без хвостовых поверхностей и дымовой трубы с использованием технологических и конструктивных преимуществ конструкции контактного парогенератора с пароперегревателем, эжектора и циклона, для очистки продуктов сгорания от вредных компонентов в качестве адсорбента гранулированного доменного шлака и автономной подпиткой водоснабжения, что увеличивает ее экономическую и экологическую эффективность.
название | год | авторы | номер документа |
---|---|---|---|
Комплексная теплогенерирующая установка | 2021 |
|
RU2774548C1 |
Комплексная котельная установка | 2019 |
|
RU2705528C1 |
Тепловодородный генератор | 2021 |
|
RU2757044C1 |
Теплохимический генератор | 2018 |
|
RU2679770C1 |
Комплексный горизонтальный многоступенчатый адсорбер | 2022 |
|
RU2797799C1 |
КОНТАКТНЫЙ ПАРОГЕНЕРАТОР | 2008 |
|
RU2383815C1 |
Комплексный шахтный воздухоподогреватель | 2021 |
|
RU2762927C1 |
САНИТАРНО-УТИЛИЗАЦИОННАЯ ПРИСТАВКА ДЛЯ ТЕПЛОГЕНЕРАТОРА КРЫШНОЙ КОТЕЛЬНОЙ | 2014 |
|
RU2559241C1 |
Способ и устройство для получения биогаза из массива бытовых отходов | 2021 |
|
RU2778321C1 |
Динамическое устройство для очистки выхлопных газов судового двигателя | 2015 |
|
RU2608094C1 |
Предлагаемое изобретение относится к теплоэнергетике и может быть использовано как теплогенерирующая установка для получения водяного пара и нагрева сетевой воды в системах теплоснабжения. Техническим результатом предлагаемого изобретения является повышение экономической и экологической эффективности комплексной теплогенерирующей установки. Технический результат достигается комплексной теплогенерирующей установкой, содержащей контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, сверху корпус топки соединен с конвекционным газоходом, в котором размещен пароперегреватель, сам конвекционный газоход соединен сверху с приемной камерой эжектора, входной патрубок которого соединен с патрубком питательной воды, а диффузор соединен с циклоном, патрубок выхода пара которого соединен, в свою очередь, с пароперегревателем, патрубок отвода парогазовой смеси соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего из расположенных сверху–вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионно-устойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через парогазовые каналы сверху–вниз с газовым коллектором и пирамидальным днищем, снабженными газовым патрубком, перед которым установлен каплеотбойник и конденсатным патрубком, соответственно, а водные каналы соединены справа снизу и слева сверху с входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, соответственно, газовый патрубок соединен с корпусом адсорбера, снабженного патрубками входа и выхода очищенного газа, патрубками входа и выхода промывочной воды, причем в полости адсорбера сверху–вниз расположены каплеотбойник, ороситель, соединенный с патрубком входа промывочной воды и, в шахматном порядке, перфорированные корзины, заполненные гранулированным доменным шлаком, а патрубок выхода очищенных газов соединен с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком. 5 ил.
Комплексная теплогенерирующая установка, содержащая контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, сверху корпус топки соединен с приемной камерой эжектора, диффузор которого соединен с циклоном, патрубок отвода парогазовой смеси которого соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего из расположенных сверху–вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионно-устойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через парогазовые каналы сверху–вниз с газовым коллектором и пирамидальным днищем, снабженными газовым патрубком и конденсатным патрубком, соответственно, а водные каналы соединены справа и слева с входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, вентилятор высокого давления, напорный патрубок которого снабжен коническим насадком, отличающаяся тем, что сверху корпус топки контактного парогенератора соединен с конвекционным газоходом, в котором размещен пароперегреватель, соединенный с патрубком выхода пара циклона, сам конвекционный газоход соединен сверху с приемной камерой эжектора, в пластинчатом конденсаторе перед выходным газовым патрубком в газовом коллекторе установлен каплеотбойник, а входной и выходной водяные коллекторы расположены справа снизу и слева сверху теплообменного короба, газовый патрубок газового коллектора соединен с корпусом адсорбера, снабженного патрубками входа и выхода очищенного газа, патрубками входа и выхода промывочной воды, причем в полости адсорбера сверху–вниз расположены каплеотбойник, ороситель, соединенный с патрубком входа промывочной воды и, в шахматном порядке, перфорированные корзины, заполненные гранулированным доменным шлаком, а патрубок выхода очищенных газов соединен с вентилятором высокого давления.
Комплексная котельная установка | 2019 |
|
RU2705528C1 |
КОНТАКТНЫЙ ПАРОГЕНЕРАТОР | 2008 |
|
RU2383815C1 |
US 5590610 A1, 07.01.1997. |
Авторы
Даты
2021-09-28—Публикация
2021-04-12—Подача