КОГЕНЕРАЦИОННАЯ УСТАНОВКА Российский патент 2021 года по МПК F02G5/04 

Описание патента на изобретение RU2758020C1

Изобретение относится к области энергетики и предназначено для одновременного производства тепловой и электрической энергии при помощи когенерационных установок с двигателем внутреннего сгорания (далее - ДВС) и может быть использовано в качестве мини-ТЭЦ, производящей тепловую и электрическую энергию для нужд промышленных и коммунальных потребителей.

Известен аналог - когенерационная установка, содержащая газопоршневой ДВС с электрогенератором на одном валу с ним, систему его охлаждения с насосом, систему утилизации теплоты, гидролинии, циркуляционный насос системы утилизации теплоты, магистраль отработанных газов, вентили, газопровод природного газа, вихревой теплогенератор, устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей и теплоэнергетическую установку с дизельным ДВС на одном валу с ним [Патент РФ №2520796 С2, МПК F02G 5/04 Авторы: Жаров Александр Викторович (RU), Павлов Александр Анатольевич (RU), Фавстов Владимир Сергеевич (RU). Опубл. 27.06.2014 г. Бюл. №18]. Данный аналог принят в качестве прототипа.

Недостатком аналога и прототипа является неполное использование энергетических возможностей электрогенераторов, что сказывается на общем КПД установки.

Задача, решаемая изобретением - создание когенерационной установки, обладающей высокой энергетической эффективностью и работающей в условиях быстроизменяющейся нагрузки, позволяющей работать с максимальной эффективностью.

Технический результат - повышение энергетической эффективности и КПД когенерационной установки за счет утилизации теплоты с обмоток статора и ротора электрогенераторов ДВС для подогрева воды на нужды систем отопления и горячего водоснабжения коммунальных потребителей и собственные технологические нужды промышленных предприятий.

Для достижения указанного технического результата предложена когенерационная установка, включающая в себя газопоршневой ДВС с электрогенератором на одном валу с ним, систему его охлаждения с насосом, систему утилизации теплоты, гидролинии, циркуляционный насос системы утилизации теплоты, магистраль отработанных газов, вентили, газопровод природного газа, вихревой теплогенератор, устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей и теплоэнергетическую установку с дизельным ДВС на одном валу с ним.

Особенность заключается в том, что перед теплообменником-утилизатором теплоты системы охлаждения газопоршневого ДВС имеется контур, состоящий из теплообменников - утилизаторов теплоты статора и ротора электрогенераторов ДВС, гидролиний и трехходовых кранов, позволяющий осуществить предварительный нагрев воды, предназначенной для нужд потребителей.

Сущность изобретения поясняется чертежом, на котором представлена схема когенерационной установки.

Когенерационная установка содержит газопоршневой ДВС 1, соединенный с электрогенератором 2, насос 3 системы охлаждения газопоршневого ДВС, теплообменник - утилизатор 4 теплоты системы охлаждения газопоршневого ДВС, теплообменник - утилизатор 5 теплоты отработанных газов, теплообменник - утилизатор 6 теплоты вихревого теплогенератора, теплообменник-утилизатор 7 теплоты статора и ротора электрогенератора газопоршневого ДВС, теплообменник-утилизатор 8 теплоты статора и ротора электрогенератора дизельного ДВС, теплоэнергетическую установку с дизельным ДВС 9 и электрогенератором 10, вихревой теплогенератор 11 с приводом от электродвигателя 12, циркуляционный насос 13 системы утилизации теплоты, воздушный радиатор 14 для утилизации теплоты газопоршневого ДВС, трехходовые краны 15, 16, 17, 18 и 19, вентили 20 и 21, магистраль 22 отработанных газов, обратный клапан 23, гидролинии - 24, 25, 26, 27, 28, 29, 30, 31, 32, воздуховод 33 воздушного радиатора для утилизации теплоты газопоршневого ДВС, устройство 34 для получения электроэнергии с использованием низкопотенциальных теплоносителей с электрогенератором 35, газопровод 36 природного газа.

Когенерационная установка работает следующим образом.

При работе газопоршневого ДВС 1 электрогенератор 2 вырабатывает электроэнергию, которая предназначена для электрической сети потребителей. Топливом для газопоршневого ДВС 1 служит природный газ, поступающий к нему по газопроводу природного газа 36. Насос 3 системы охлаждения газопоршневого ДВС подает охлаждающую жидкость по гидролинии 24 через систему охлаждения газопоршневого ДВС к теплообменнику - утилизатору его теплоты 4, а отработанные газы по магистрали 22 поступают к теплообменнику - утилизатору их теплоты 5. В теплообменниках - утилизаторах 4 и 5 происходит передача теплоты потоку жидкости, подаваемому к ним по гидролинии 26 циркуляционным насосом системы утилизации теплоты 13. В качестве первой ступени нагрева воды используются теплообменники - утилизаторы теплоты статора и ротора 7, 8 электрогенераторов 2 и 10 соответственно. Поток воды направляется к трехходовому крану 17, который в зависимости от работы электрогенератора направляет поток жидкости либо в теплообменники - утилизаторы теплоты статора ротора 7 и 8, либо по гидролинии 26.

В зависимости от работы электрогенераторов возможно несколько вариантов движения потока жидкости:

1. В режиме работы на максимальной тепловой и электрической мощности, когда работают газопоршневой и дизельный ДВС одновременно, поток жидкости трехходовым краном 17 направляется по гидролинии 31 к трехходовому крану 18, который направляет поток жидкости к теплообменнику - утилизатору теплоты статора и ротора электрогенератора дизельного ДВС 7, где происходит передача тепловой энергии потоку жидкости. Далее трехходовой кран 19 направляет поток жидкости по гидролинии 32 в теплообменник-утилизатор 8 для утилизации теплоты статора и ротора электрогенератора 10.

2. При работе только газопоршневого ДВС 1, поток жидкости трехходовым краном 17 направляется по гидролинии 31 к трехходовому крану 18, который направляет поток жидкости к теплообменнику - утилизатору теплоты статора и ротора электрогенератора дизельного ДВС 7. Сняв теплоту со статора и ротора электрогенератора дизельного ДВС 7, поток жидкости проходит через трехходовой кран 19 по гидролинии 31.

3. В случае остановки работы газопоршевого ДВС 1 включается дизельный ДВС 9. В этом случае, для утилизации теплоты статора и ротора электрогенератора 10 трехходовым краном 18 поток жидкости по гидролинии 29 направляется в теплообменник - утилизатор теплоты статора и ротора электрогенератора дизельного ДВС 8, откуда далее, сняв теплоту, по гидролиниям 31 и 26 проходит к следующим ступеням нагрева.

Затем поток жидкости, пройдя теплообменники-утилизаторы 4 и 5, направляется к трехходовому крану 15, который в зависимости от выбранного режима работы направляет поток жидкости либо в теплообменник-утилизатор теплоты вихревого теплогенератора 6, либо по гидролинии 27 в обход его. Жидкость направляется трехходовым краном 15 по гидролинии 27 к потребителю в случае работы когенерационной установки на режиме полной электрической и тепловой мощности. В режиме работы когенерационной установки для выработки только тепловой энергии трехходовой кран 15 направляет жидкость по гидролинии 26 через теплообменник - утилизатор теплоты вихревого теплогенератора 6, где жидкость дополнительно получает тепловую энергию от него. Вихревой теплогенератор 11 приводится в движение от электродвигателя 12. По гидролинии 28 вихревой теплогенератор 11 соединен с теплообменником - утилизатором своей теплоты 6. Пройдя через теплообменник-утилизатор теплоты вихревого генератора 6 жидкость направляется к потребителю. Отработанные газы по своей магистрали 22, после теплообменника - утилизатора теплоты 5 направляются в устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей 34. Используя тепловую энергию отработанных газов, устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей 34 при помощи электрогенератора 35 вырабатывает электрическую энергию, которая потребляется электрической сетью потребителя. При работе когенерационной установки для выработки тепловой и электрической энергии в режиме полной мощности вентиль 20 закрыт, а 21 открыт, обеспечивая, таким образом, движение отработанных газов по соответствующей магистрали 22 через теплообменник утилизатор их теплоты 5 к устройству для получения электроэнергии с использованием низкопотенциальных теплоносителей 34. В случае работы когенерационной установки для выработки только электрической энергии трехходовой кран 17 направляет поток жидкости по гидролинии 26, минуя контур съема теплоты со статора и ротора электрогенераторов 2 и 10, вентиль 21 перекрывает магистраль отработанных газов 22, подводящих их к теплообменнику-утилизатору теплоты 5, а вентиль 20 открывается, обеспечивая движение отработанных газов к устройству для получения электроэнергии с использованием низкопотенциальных теплоносителей 34.

Также в случае работы когенерационной установки для выработки только электрической энергии трехходовой кран 16 перекрывается таким образом, что охлаждающая жидкость газопоршневого ДВС 1 по гидролинии 25 циркулирует через воздушный радиатор для утилизации теплоты газопоршневого ДВС 14. Воздух, движущийся по воздуховоду воздушного радиатора для утилизации теплоты газопоршневого ДВС 33, утилизировав теплоту газопоршневого ДВС 1, поступает к устройству для получения электроэнергии с использованием низкопотенциальных теплоносителей 34. В устройстве для получения электроэнергии с использованием низкопотенциальных теплоносителей 34 тепловая энергия воздуха преобразуется в электрическую при помощи электрического генератора 35. При этом система утилизации теплоты не функционирует. Теплоэнергетическая установка с дизельным ДВС 9 и электрогенератором 10 предназначена для обеспечения когенерационной установки тепловой и электрической энергией во время возникновения аварийных ситуаций (например, при прекращении подачи природного газа) или плановых ремонтных, профилактических работах. Также теплоэнергетическая установка с дизельным ДВС 9 и электрогенератором 10 может работать в качестве резервного источника тепловой и электрической энергии при возникновении пиковых режимов потребления энергии. Теплоэнергетическая установка с дизельным ДВС 9 и электрогенератором 10 подключена к системе охлаждения газопоршневого ДВС 1 при помощи гидролиний 30 и обратного клапана 23. При штатной работе газопоршневого ДВС 1 часть его охлаждающей жидкости циркулирует через теплоэнергетическую установку с дизельным ДВС 9, обеспечивая тем самым постоянную ее тепловую готовность. Частичная циркуляция охлаждающей жидкости газопоршневого ДВС 1 через теплоэнергетическую установку с дизельным ДВС 9 обеспечивается параллельной схемой подключения гидролиний 30 к гидролинии 24. В случае возникновения ситуаций, когда необходима работа теплоэнергетической установки с дизельным ДВС 9, газопоршневой ДВС 1 останавливается. Далее запускается теплоэнергетическая установка с дизельным ДВС 9 и охлаждающая жидкость начинает циркулировать через него, где нагревается и по гидролинии 30 поступает к гидролинии 24. По гидролинии 24 охлаждающая жидкость подводится к системе охлаждения газопоршневого ДВС 1, затем к теплообменнику - утилизатору теплоты системы охлаждения газопоршневого ДВС 4 и затем обратно к теплоэнергетической установке с дизельным двигателем 9. Обратный клапан 23 предотвращает циркуляцию охлаждающей жидкости только через теплоэнергетическую установку с дизельным ДВС 9. В теплообменнике - утилизаторе системы охлаждения газопоршневого ДВС 4 происходит передача теплоты потоку жидкости подаваемой к нему по гидролинии 26 циркуляционным насосом системы утилизации теплоты 13.

Заявленная когенерационная установка может быть использована в качестве мини-ТЭЦ, производящей тепловую и электрическую энергию для нужд промышленных предприятий, отдельных жилых районов или тепличных комплексов. Применение ее позволит максимально повысить эффективность использования теплоты сгорания топлива, повысить КПД и снизить сроки окупаемости установки.

Похожие патенты RU2758020C1

название год авторы номер документа
КОГЕНЕРАЦИОННАЯ УСТАНОВКА 2012
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Фавстов Владимир Сергеевич
RU2520796C2
Когенерационная установка с глубокой утилизацией тепловой энергии теплового двигателя 2016
  • Павлов Александр Анатольевич
  • Жаров Александр Викторович
  • Смирнов Леонид Владимирович
  • Костылев Иван Владелинович
RU2630284C1
КОГЕНЕРАЦИОННАЯ УСТАНОВКА С ГЛУБОКОЙ УТИЛИЗАЦИЕЙ ТЕПЛОВОЙ ЭНЕРГИИ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2019
  • Паршуков Владимир Иванович
  • Ощепков Андрей Сергеевич
  • Ефимов Николай Николаевич
  • Кихтев Иван Максимович
  • Пащенко Вера Сергеевна
RU2725583C1
КОГЕНЕРАЦИОННАЯ УСТАНОВКА С ДВИГАТЕЛЕМ ВНУТРЕННЕГО СГОРАНИЯ И ДВИГАТЕЛЕМ СТИРЛИНГА 2010
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
RU2440504C1
АВТОМАТИЗИРОВАННАЯ КОМБИНИРОВАННАЯ УСТАНОВКА ПО КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ 2009
  • Высоцкий Александр Васильевич
  • Норкин Владислав Игоревич
  • Туркин Владимир Леонидович
  • Сахненко Виктор Иванович
RU2442005C2
КЛИМАТИЧЕСКАЯ СИСТЕМА ТРАНСПОРТНОГО СРЕДСТВА 2014
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Костылев Иван Владелинович
  • Смирнов Леонид Владимирович
  • Пастухов Вадим Юрьевич
RU2573514C1
ТРИГЕНЕРАЦИОННЫЙ ЦИКЛ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Костылев Иван Владелинович
  • Смирнов Леонид Владимирович
RU2582536C1
ЖИДКОСТНЫЙ ПОДОГРЕВАТЕЛЬ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2013
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Лебедев Антон Евгеньевич
  • Фавстов Владимир Сергеевич
  • Горшков Роман Владимирович
RU2535291C1
ПРЕДПУСКОВАЯ ТЕПЛОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2013
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Лебедев Антон Евгеньевич
  • Фавстов Владимир Сергеевич
  • Горшков Роман Владимирович
RU2554687C2
ТЕПЛОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2009
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Лебедев Антон Евгеньевич
RU2421626C1

Иллюстрации к изобретению RU 2 758 020 C1

Реферат патента 2021 года КОГЕНЕРАЦИОННАЯ УСТАНОВКА

Изобретение относится к области энергетики и предназначено для одновременного производства тепловой и электрической энергии при помощи когенерационных установок с двигателем внутреннего сгорания (далее - ДВС) и может быть использовано в качестве мини-ТЭЦ, производящей тепловую и электрическую энергию для нужд промышленных и коммунальных потребителей. Когенерационная установка содержит газопоршневой ДВС с электрогенератором на одном валу с ним, систему его охлаждения с насосом, систему утилизации теплоты, гидролинии, циркуляционный насос системы утилизации теплоты, магистраль отработанных газов, вентили, газопровод природного газа, вихревой теплогенератор, устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей и теплоэнергетическую установку с дизельным ДВС на одном валу с ним. Перед теплообменником-утилизатором теплоты системы охлаждения газопоршневого ДВС имеется контур, состоящий из теплообменников-утилизаторов теплоты статора и ротора электрогенераторов ДВС, гидролиний и трехходовых кранов, позволяющий осуществить предварительный нагрев воды, предназначенной для нужд потребителей. Технический результат - повышение энергетической эффективности и КПД когенерационной установки за счет утилизации теплоты с обмоток статора и ротора электрогенераторов ДВС для подогрева воды на нужды систем отопления и горячего водоснабжения коммунальных потребителей и собственные технологические нужды промышленных предприятий. 1 ил.

Формула изобретения RU 2 758 020 C1

Когенерационная установка, содержащая газопоршневой ДВС с электрогенератором на одном валу с ним, систему его охлаждения с насосом, систему утилизации теплоты, гидролинии, циркуляционный насос системы утилизации теплоты, магистраль отработанных газов, вентили, газопровод природного газа, вихревой теплогенератор, устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей и теплоэнергетическую установку с дизельным ДВС на одном валу с ним, отличающаяся тем, что перед теплообменником-утилизатором теплоты системы охлаждения газопоршневого ДВС имеется контур, состоящий из теплообменников-утилизаторов теплоты статора и ротора электрогенераторов ДВС, гидролиний и трехходовых кранов, позволяющий осуществить предварительный нагрев воды, предназначенной для нужд потребителей.

Документы, цитированные в отчете о поиске Патент 2021 года RU2758020C1

КОГЕНЕРАЦИОННАЯ УСТАНОВКА 2012
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Фавстов Владимир Сергеевич
RU2520796C2
ЖИДКОСТНЫЙ ПОДОГРЕВАТЕЛЬ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2013
  • Жаров Александр Викторович
  • Павлов Александр Анатольевич
  • Лебедев Антон Евгеньевич
  • Фавстов Владимир Сергеевич
  • Горшков Роман Владимирович
RU2535291C1
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ТЯГОВОГО ТРАНСФОРМАТОРА ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2004
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Алейников Игорь Аркадьевич
  • Торукало Николай Николаевич
RU2280567C2

RU 2 758 020 C1

Авторы

Волкова Ания Дамировна

Марченко Александра Витальевна

Даты

2021-10-25Публикация

2021-01-11Подача