Устройство квантовой рассылки симметричной битовой последовательности на поднесущей частоте модулированного излучения с гомодинным методом приема Российский патент 2021 года по МПК H04L9/08 

Описание патента на изобретение RU2758709C1

Настоящее изобретение относится к оптической технике, а именно к системам фотонной квантовой связи.

Известно устройство квантовой рассылки симметричных битовых последовательностей [Hirano и др. Quantum Sci Technol 2 (2017) 024010], базирующееся на когерентном методе приема. Битовая последовательность может быть распределена на расстояние 60 км при заданных условиях процессов последующей обработки.

Представленные устройства [Патент CN105024809B, дата приоритета 22.07.2015 МКИ: H04L9/08], [Патент CN102724036B, дата приоритета 04.06.2012. МКИ: H04L9/08, H04L27/26] обладают следующими недостатками: применение одномодовых когерентных состояний, то есть у сигнала малой мощности нет готового дополнительного опорного когерентного сигнала и нет опорной нулевой фазы; низкая спектральная эффективность и неустойчивость к внешним условиям, оказывающим воздействие на оптическое волокно.

Известно устройство квантовой рассылки симметричной битовой последовательности на поднесущей (боковой) частоте модулированного излучения [Патент RU2454810C1, дата приоритета 24.11.2010. МКИ: H04L 9/08], являющееся наиболее близким к описываемому. Так как здесь применяются многомодовые когерентные состояния, фаза несущей моды принимается за опорную, само же наличие согласованной несущей моды в квантовом канале обеспечивает дополнительную защиту от атак вида расщепления фотонов, так как можно обеспечивать дополнительный мониторинг интенсивности. В блоке получателя основной составляющей частью является крупногабаритный детектор одиночных фотонов (ДОФ), поэтому мощность принимаемых сигнальных импульсов остается достаточно малой. Данное устройство можно принять как прототип заявленного решения. Упомянутый ДОФ является существенным недостатком, препятствующий получению технического результата, который обеспечивается заявляемым изобретением.

ДОФ также не только крупногабаритны, но и сложны в производстве, в то время как балансный вычитающий детектор с низким уровнем шума может быть собран из стандартного телекоммуникационного оборудования.

Настоящее изобретение разрабатывается на основе существующей установки квантовой рассылки симметричных битовых последовательностей на поднесущих частотах модулированного излучения. Техническая часть передающего модуля остается неизменной, в то время как принимающий модуль переработан. То есть решается задача по усовершенствовании существующей технологии посредством изменения принципов работы принимающего модуля. В терминах упрощенной теоретической модели работа системы описывается следующим образом:

— отправитель генерирует немодулированное лазерное излучение с помощью источника когерентного излучения;

— отправитель посредством фазовой модуляции генерирует многомодовое когерентное состояние, записывая в его фазе квантовую информацию;

— отправитель осуществляет отправку состояния через квантовый канал;

— получатель на принимающей стороне проводит повторную фазовую модуляцию, в результате которой существенная часть энергии переходит из центральной моды в поднесущие, то есть осуществляется процесс интерференции, аналогичный тому, что наблюдается в классическом гомодинировании — в случае конструктивной интерференции на несущей частоте будет меньше энергии, чем в совокупности на поднесущих частотах, и наоборот — при деструктивной;

— сигнал на поднесущих частотах и сигнал на центральной частоте разделяются с помощью спектральной фильтрации и оптического циркулятора по двум каналам, ведущим к плечам вычитающего оптического балансного детектора;

— осуществляется процесс детектирования и мониторинг уровня получаемого напряжения (варианты: положительное, отрицательное, близкое к нулю), после чего полученный сигнал оцифровывается, в результате получатель получает битовую последовательность, закодированную отправителем;

— для синхронизации работы блоков отправителя и получателя используется блок синхронизации, использующий классическое оптическое излучение и SPF-модули.

Техническим результатом является уменьшение размеров принимающего модуля, снижение стоимости конечной системы, и повышение уровня его ремонтопригодности, так как вычитающий балансный детектор представляет собой стандартный телекоммуникационный элемент.

Заявленное устройство делится на сторону отправителя и получателя. Сторона отправителя содержит источник когерентного излучения, оптический изолятор, оптический фазовый модулятор и аттенюатор. Генератор управляющих напряжений (ГУН) соединен с ЭВМ через программируемую логическую интегральную схему (ПЛИС). С другой стороны, ГУН подсоединен к модулятору электрического сигнала через устройство фазовой автоподстройки частоты (ФАПЧ). Кроме того, этот фазовый модулятор соединен с ПЛИС, которая, помимо всего прочего, подключена к модулю стандарта SFP (SFP-модулю) и аттенюатору.

Сторона получателя содержит два поляризационных светоделителя и два фазовых модулятора, подключенных к каждому из выходных портов одного поляризационного светоделителя, а также к двух входным портам другого. На стороне получателя также установлен циркулятор, отводящий излучение, отраженное от спектрального фильтра, через второй выходной порт. Балансный детектор, также содержащийся в схеме, является покупным изделием и отдельно не рассматривается. Детектор подключен к анализатору сигнала, который, в свою очередь, соединен с ЭВМ.

Управляющие пользовательские модули содержат SFP-модули. Для синхронизационного сигнала установлен фильтр низких частот.

Дополнительные особенности устройства будут изложены в последующем описании, способ работы будет также конкретизирован далее и подкреплен математическими выкладками. Преимущества изобретения будут реализованы и достигнуты устройством изобретения, изложенном в письменном описании и формуле изобретения, а также на прилагаемых чертежах.

Описания заявленного устройства подаются в пояснительной форме и направлены на объяснение основных принципов работы изобретения и уточнение его отличий от ранее заявленных подобных изобретений.

Чертеж иллюстрирует функциональную схему заявленного устройства.

Изобретение реализует генерацию, передачу и прием квантовой информации, содержащейся в фазе многомодовых когерентных состояний, по волоконному квантовому каналу. Устройство разработано таким образом, что может быть собрано из стандартного телекоммуникационного оборудования. Ниже рассматриваются математическая модель системы в упрощенном классическом виде и оптическая схема.

Как показано на чертеже, заявляемое устройство состоит из стороны отправителя битовой последовательности и принимающей стороны. Сторона отправителя содержит оптически сопряженные (оптические каналы изображены толстым пунктиром) источник когерентного излучения (1), оптический изолятор (2), оптический фазовый модулятор излучения (3) и аттенюатор (4). ЭВМ (5) соединена с ПЛИС (6), которая, в свою очередь, подключена к генератору управляющих напряжений (7). Сигнал генератора управляющих напряжений (7) подается на устройство фазовой автоподстройки частоты (8), после чего поступает на фазовый модулятор электрического сигнала (9). Кроме того, этот фазовый модулятор соединен с ПЛИС (6). ПЛИС (6) подает сигнал на SFP-модуль (10) и аттенюатор (4).

После прохождения аттенюатора (4) излучение посылается на сторону получателя. Излучение разделяется на поляризационном светоделителе (11), после чего каждая часть излучения проходит соответственно фазовые модуляторы (12) и (13). Затем фазово модулированные составляющие излучения соединяются вновь на поляризационном светоделителе (14). Далее излучение проходит через циркулятор (15), поступает на спектральный фильтр (16). Часть излучения проходит фильтр и поступает на первое плечо (17а) балансного детектора (17). Другая же часть излучения отражается на спектральном фильтре (16), проходит через циркулятор (15) и поступает на второе плечо (17б) балансного детектора (17). После чего сигнал с балансного детектора поступает на анализатор сигнала (18). Анализатор сигнала посылает результат обработки на ЭВМ (19).

Управляющая данным процессом электрическая часть у получателя выглядит следующим образом. Сигнал для синхронизации, который отправитель посылает через модуль стандарта SFP (10), приходит на SFP-модуль (20) получателя. Синхронизационный сигнал проходит фильтр низких частот (21) и поступает на генератор управляющих напряжений (22) и ПЛИС (23). С помощью устройства ФАПЧ (24) на электрическом фазовом модуляторе (25) формируется модулирующий сигнал.

Устройство работает следующим образом. Источник когерентного излучения (1) генерирует световой пучок, проходящий через защищающий от отраженного света лазер оптический изолятор (2). Затем излучение модулируется на электрооптическом фазовом модуляторе (3) синусоидальным сигналом с внесенной отправителем фазой. Для получения модулирующего сигнала ГУН (7) генерирует колебания на тактовой частоте, которое используется для синхронизации системы. Сигнал от ГУН (7) подается на ФАПЧ (8), на котором с помощью умножения частоты получают выходной сигнал на частоте модуляции. Затем данный сигнал поступает на электрический фазовый модулятор (9), на котором вносится одна из четырех фаз с помощью модулирующего сигнала от ПЛИС (6). Данный сигнал выступает модулирующим в фазовой модуляции излучения в (3). В таком случае информация о фазе находится в так называемых боковых частотных полосах, амплитуда которых должна быть много меньше амплитуды центральной полосы. То есть мощность излучения должна быть такова, чтобы на боковых частотах на один бит приходилось в среднем меньше одного фотона. Необходимые мощности достигаются с помощью аттенюатора (4), управляемого с помощью ПЛИС (6).

Для компенсации поляризационных искажений излучения поступающий от отправителя сигнал делится на поляризационном светоделителе (11), после чего обе части излучения проходят на соответственно оптически сопряженные фазовые модуляторы оптического излучения (12) и (13). Аналогично, получатель проводит фазовую модуляцию синусоидальным сигналом на той же частоте с одной из четырех возможных фаз из двух наборов: {0, π} и {π/2, 3π/2}, соответственно. Индекс модуляции выбирается так, чтобы мощность излучения на центральной частоте была сопоставима с мощностью излучения на боковых частотах. Электрическое поле в результате двойной модуляции представимо через разложение Якоби-Ангера и выглядит следующим образом:

(1)

где E0 — амплитуда исходного поля;

ω — частота исходного сигнала;

Ω — частота модулирующего сигнала;

ma, mb — индексы модуляции соответственно отправителя и получателя;

φab — фазы, заданные соответственно на модуляторах отправителя и получателя;

Jk (m) — функция Бесселя первого рода;

m1 = (ma + mb) cos(Δφ/2);

m2 = (ma - mb) sin(Δφ/2);

Ψ = Ωt + (φa + φb)/2;

Δφ — фазовая задержка.

Затем обе части соединяются на светоделителе (14) и поступают на циркулятор (15). Далее излучение делится на спектральном фильтре (16) так, чтобы излучение на боковых частотах проходило фильтр и поступало на первое плечо (17а) балансного детектора (17), а излучение на центральной частоте отражалось, и через циркулятор (15) поступало на второе плечо (17б) балансного детектора. Соответственно, поля в верхнем и нижнем плечах детектора соответственно представимы как:

(2а)

(2б)

Выходное напряжение в отсутствие дополнительных шумов есть:

(3)

где G — коэффициент усиления встроенных в схему детектора усилителей;

R(λ) — чувствительность фотодиодов.

Результат с балансного детектора приходит на анализатор сигнала (18), после чего информация о фазе поступает на ЭВМ (19).

Для синхронизации пользователей ПЛИС отправителя посылает через SFP-модуль (10) синхронизационный сигнал, который получатель принимает на SFP-модуле (20). Сигнал синхронизации проходит фильтр низких частот (21), затем поступает на ГУН (22) и на ПЛИС (23) получателя. Аналогично стороне отправителя, модулирующий сигнал для оптических фазовых модуляторов получается с помощью умножения синхронизационного сигнала на ФАПЧ (24), в который на фазовом модуляторе электрического сигнала (25) вносится одна из четырех возможных фаз, которая поступает на модулятор (25) от ПЛИС (23).

Похожие патенты RU2758709C1

название год авторы номер документа
Устройство квантовой рассылки симметричной битовой последовательности на поднесущей частоте модулированного излучения с двойным гомодинным методом приема 2020
  • Гончаров Роман Константинович
  • Самсонов Эдуард Олегович
  • Зиновьев Александр Вячеславович
  • Фадеев Максим Алексеевич
  • Сантьев Алексей Альбертович
  • Первушин Борис Евгеньевич
  • Егоров Владимир Ильич
RU2758708C1
Устройство квантовой рассылки симметричной битовой последовательности на поднесущей частоте модулированного излучения с гетеродинным методом приема 2020
  • Гончаров Роман Константинович
  • Самсонов Эдуард Олегович
  • Зиновьев Александр Вячеславович
  • Фадеев Максим Алексеевич
  • Сантьев Алексей Альбертович
  • Первушин Борис Евгеньевич
  • Егоров Владимир Ильич
RU2758711C1
Устройство квантового распределения симметричной битовой последовательности на основе непрерывных переменных с использованием поляризационного объединителя 2023
  • Егоров Владимир Ильич
  • Чистяков Владимир Викторович
  • Наседкин Борис Александрович
  • Самсонов Эдуард Олегович
  • Филипов Илья Максимович
  • Гончаров Роман Константинович
  • Первушин Борис Евгеньевич
  • Адам Юрий Александрович
  • Смирнов Семен Владимирович
  • Кириченко Даниил Николаевич
RU2806780C1
Устройство квантовой коммуникации на боковых частотах с регистрацией излучения на центральной частоте 2020
  • Гайдаш Андрей Алексеевич
  • Козубов Антон Владимирович
  • Мирошниченко Георгий Петрович
RU2750810C1
Устройство квантовой рассылки ключа на боковых частотах, устойчивое к поляризационным искажениям сигнала в волоконно-оптических линиях связи 2019
  • Смирнов Семен Владимирович
  • Чистяков Владимир Викторович
  • Кынев Сергей Михайлович
  • Иванова Алена Евгеньевна
  • Егоров Владимир Ильич
  • Глейм Артур Викторович
RU2747164C1
Устройство квантовой рассылки ключа на боковых частотах с повышенной устойчивостью к шумам в волоконно-оптической линии связи 2023
  • Смирнов Семен Владимирович
  • Киселев Федор Дмитриевич
  • Чистяков Владимир Викторович
  • Егоров Владимир Ильич
  • Зиновьев Александр Вячеславович
RU2806811C1
УЧЕБНАЯ УСТАНОВКА ДЛЯ ВЫПОЛНЕНИЯ ЭКСПЕРИМЕНТОВ ПО КВАНТОВОЙ ОПТИКЕ ДЛЯ ЦЕЛЕЙ ИЗУЧЕНИЯ ПРОТОКОЛОВ КВАНТОВОЙ КРИПТОГРАФИИ 2019
  • Курочкин Владимир Леонидович
  • Курочкин Юрий Владимирович
  • Родимин Вадим Евгеньевич
  • Кривошеин Евгений Григорьевич
  • Пономарев Михаил Юрьевич
  • Федоров Алексей Константинович
RU2722133C1
Лазерный интерферометр 2016
  • Телешевский Владимир Ильич
  • Гришин Сергей Геннадьевич
  • Бушуев Семён Викторович
RU2645005C1
Способ аутентификации коммутаторов на основе кодирования сигнала в нескольких базисах 2020
  • Кулиш Ольга Александровна
  • Королев Игорь Дмитриевич
  • Комиссарова Татьяна Петровна
RU2755593C1
Устройство квантовой коммуникации на боковых частотах с увеличенным дискретным набором фаз модулирующих сигналов 2020
  • Гайдаш Андрей Алексеевич
  • Козубов Антон Владимирович
  • Мирошниченко Георгий Петрович
RU2744509C1

Иллюстрации к изобретению RU 2 758 709 C1

Реферат патента 2021 года Устройство квантовой рассылки симметричной битовой последовательности на поднесущей частоте модулированного излучения с гомодинным методом приема

Изобретение относится к системам фотонной квантовой связи. Технический результат заключается в обеспечении устройства квантовой рассылки симметричных битовых последовательностей с расширенной областью применения. Устройство содержит блок отправителя, включающий в себя соединенные посредством волоконно-оптического тракта источник когерентного излучения, оптический изолятор, оптический фазовый модулятор и аттенюатор, а также блок получателя, состоящий из входного делителя света по поляризации, двух оптических фазовых модуляторов, соединяющего излучение делителя света по поляризации, оптического циркулятора и спектрального фильтра, осуществляющего разделение и направление оптического излучения в соответствующие плечи балансного детектора, кроме того, блок отправителя включает в себя ЭВМ и подключенную к ней ПЛИС, к ПЛИС на стороне отправителя подключены генератор управляющих напряжений (ГУН) и вход электрического фазового модулятора, выход которого подключен к оптическому фазовому модулятору, кроме того, к электрическому фазовому модулятору подключено устройство фазовой автоподстройки частоты (ФАПЧ), которое в свою очередь сопряжено с генератором управляющих напряжений, также ПЛИС соединена c модулем стандарта SFP отправителя, который, в свою очередь, по волоконно-оптической линии связи соединен с модулем стандарта SFP блока получателя. Блок получателя также включает в себя ЭВМ, сопряженную с ней ПЛИС, соединенные с ПЛИС фильтр низких частот и генератор управляющих напряжений, к генератору управляющих напряжений подключено устройство фазовой автоподстройки частоты, выходы которого подключены к электрическому фазовому модулятору, который также подключен к оптическим фазовым модуляторам в блоке получателя, кроме того, в блоке получателя присутствует анализатор сигнала, сопряженный с ЭВМ и выходом балансного детектора. 1 ил.

Формула изобретения RU 2 758 709 C1

Устройство квантовой рассылки симметричных битовых последовательностей, содержащее блок отправителя, включающий в себя соединенные посредством волоконно-оптического тракта источник когерентного излучения, оптический изолятор, оптический фазовый модулятор и аттенюатор, а также блок получателя, состоящий из входного делителя света по поляризации, двух оптических фазовых модуляторов, соединяющего излучение делителя света по поляризации, оптического циркулятора и спектрального фильтра, осуществляющего разделение и направление оптического излучения в соответствующие плечи балансного детектора, кроме того, блок отправителя включает в себя ЭВМ и подключенную к ней ПЛИС, к ПЛИС на стороне отправителя подключены генератор управляющих напряжений (ГУН) и вход электрического фазового модулятора, выход которого подключен к оптическому фазовому модулятору, кроме того, к электрическому фазовому модулятору подключено устройство фазовой автоподстройки частоты (ФАПЧ), которое в свою очередь сопряжено с генератором управляющих напряжений, также ПЛИС соединена c модулем стандарта SFP отправителя, который, в свою очередь, по волоконно-оптической линии связи соединен с модулем стандарта SFP блока получателя, блок получателя также включает в себя ЭВМ, сопряженную с ней ПЛИС, соединенные с ПЛИС фильтр низких частот и генератор управляющих напряжений, к генератору управляющих напряжений подключено устройство фазовой автоподстройки частоты, выходы которого подключены к электрическому фазовому модулятору, который также подключен к оптическим фазовым модуляторам в блоке получателя, кроме того, в блоке получателя присутствует анализатор сигнала, сопряженный с ЭВМ и выходом балансного детектора.

Документы, цитированные в отчете о поиске Патент 2021 года RU2758709C1

УСТРОЙСТВО КВАНТОВОЙ РАССЫЛКИ КРИПТОГРАФИЧЕСКОГО КЛЮЧА НА ПОДНЕСУЩЕЙ ЧАСТОТЕ МОДУЛИРОВАННОГО ИЗЛУЧЕНИЯ 2010
  • Мазуренко Юрий Тарасович
  • Орлов Вячеслав Васильевич
  • Рупасов Андрей Викторович
  • Глейм Артур Викторович
  • Егоров Владимир Ильич
RU2454810C1
СПОСОБ КОДИРОВАНИЯ И ПЕРЕДАЧИ КРИПТОГРАФИЧЕСКИХ КЛЮЧЕЙ 2005
  • Молотков Сергей Николаевич
  • Кулик Сергей Павлович
RU2302085C1
US 6272224 B1, 07.08.2001
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
CN 105024809 A, 04.11.2015.

RU 2 758 709 C1

Авторы

Гончаров Роман Константинович

Самсонов Эдуард Олегович

Зиновьев Александр Вячеславович

Фадеев Максим Алексеевич

Сантьев Алексей Альбертович

Первушин Борис Евгеньевич

Егоров Владимир Ильич

Глейм Артур Викторович

Наседкин Борис Александрович

Даты

2021-11-01Публикация

2020-09-15Подача