Универсальный шариковый расходомер жидкости Российский патент 2021 года по МПК G01F1/05 

Описание патента на изобретение RU2761416C1

Изобретение относится к измерительной технике и может использоваться в расходометрии любых жидкостей - электропроводных и неэлектропроводных, прозрачных и непрозрачных, химически агрессивных и пожароопасных, взрывоопасных, ядовитых и опасных для окружающей среды - в химической, нефтедобывающей и нефтеперерабатывающей, пищевой и фармацевтической промышленности, в электро- и теплоэнергетике, в жилищно-коммунальном хозяйстве в автоматических системах учета водопотребления и в составе счетчика количества теплоты в водяных системах теплоснабжения.

Заявленную конструкцию универсального шарикового расходомера жидкости следует считать особоперспективной в расходометрии нефти, нефтепродуктов и газоконденсата.

Известны варианты конструкций шариковых расходомеров жидкостей, в которых используются различные способы преобразования скорости вращения шарика, выполненного из диэлектрика, в частоту импульсного выходного сигнала.

Известен шариковый электронно-оптический первичный преобразователь расхода прозрачных жидкостей [патент на изобретение RU 2548055 С1, кл. G01F 1/06, опубликован 10.04.2015 г. ] в двух вариантах конструкции, отличающиеся тем, что для формирования выходного электрического (частотного или числоимпульсного) сигнала используется светоизлучатель и фотоприемник, связанные между собой прямой оптической и обратной положительной электронной связями. Но этот тип расходомера пригоден для измерения расхода только прозрачных жидкостей.

Известен электрошариковый первичный преобразователь расхода электропроводной жидкости [патент на изобретение RU 2566428 С1, кл. G01F 1/06, опубликован 27.10.2015 г.], состоящий из корпуса, выполненного из диэлектрического материала, с кольцевым каналом, струенаправляющего аппарата, и узла формирования выходного электрического сигнала, в котором используется диэлектрический шарик с нулевой плавучестью в жидкости, в кольцевом канале и плоскости качения шарика установлены три электрода, из которых средний электрод подключен к выходу операционного усилителя, а два других электрода соединены с инвертирующим и неинвертирующим входами того же усилителя, чтобы электрические сопротивления жидкости между средним и двумя другими электродами с двумя вспомогательными резисторами образовывали отрицательную и положительную обратные связи, охватывающие операционный усилитель и управляемых вращающимся шариком. Но данный тип расходомера имеет недостаток - преобразователь работоспособен только с электропроводной жидкостью, не пригоден для измерения расхода химически агрессивных и пожароопасных, взрывоопасных жидкостей.

Наиболее близкими по принципу действия и конструкции к заявленному изобретению является радио-шариковый первичный преобразователь расхода жидкости [патент на изобретение RU 2685798 С1, кл. G01F 1/05, опубликован 23.04.2019 г.], состоящий из диэлектрического корпуса с кольцевым каналом, в котором свободно может вращаться шарик, выполненный из диэлектрического материала и имеющий нулевую плавучесть в жидкости, струенаправляющего аппарата и узла формирования выходного электрического сигнала, причем шарик выполнен пустотелым, во внутренней полости которого размещены индуктивность в виде нескольких пространственно расположенных витков электропровода и конденсатор, включенные последовательно и в кольцо с резонансной частотой, равной частоте автоколебаний индуктивно-емкостного генератора с индуктивностью, расположенной достаточно близко к кольцевому каналу, чтобы вращающейся шарик попадал в зону наведенного этой индуктивностью электромагнитного поля без нарушения герметичности проточной части расходомера, напряжение на которой после детектирования амплитудным детектором является выходным электрическим сигналом. Прототип имеет недостатки:

- выходной сигнал не импульсивный и милливольтного уровня, он не нормирован как по амплитуде, так и крутизне фронтов, поэтому он не может передаваться ни по какой линии связи во вторичный электронный преобразователь для последующего использования, например, аналого-цифрового преобразования;

- нагрузка радиоэлектронной схемы через детектор непосредственно подключена к LC-контуру, поэтому изменение параметров нагрузки влияет на требуемую частоту резонанса LC-контура и величину напряжения на нем, и в целом, на начальную настройку радиоэлектронной схемы после сборки расходомера на предприятии, что никак недопустимо для любого средства измерения;

- динамический диапазон измерения расходомера жидкости ограничен из-за неимпульсной формы выходного сигнала.

Задачей изобретения является значительное расширение области использования шарикового расходомера за счет возможности подключения к его электрическому выходу любой нагрузки, независимо от ее вида и параметров.

Технический результат - расширение динамического диапазона измерения расходов любых жидкостей за счет нормирования импульсного выходного сигнала.

Поставленная задача решается и технический результат достигается универсальным шариковым расходомером жидкости, состоящим из диэлектрического корпуса, струенаправляющего аппарата, кольцевого канала и шара, изготовленного из диэлектрического материала и имеющего нулевую плавучесть в жидкости, внутри которого находится резонансный контур, генератора высокой частоты и амплитудного детектора, в котором в отличии от прототипа, электронная схема содержит два амплитудных детектора и операционный усилитель, работающий в режиме компаратора и управляемого выходными сигналами амплитудных детекторов.

Сущность изобретения поясняется чертежами Фиг. 1 и Фиг. 2.

На Фиг. 1 изображена конструкция гидромеханической части универсального шарикового расходомера жидкости (далее по тексту - УШРЖ).

На Фиг. 2 представлена электрическая схема радиоэлектронной части УШРЖ.

Гидромеханическая часть УШРЖ, как показано на Фиг. 1, состоит из цилиндрического корпуса 1, изготовленного из диэлектрического материала (стекла, капролона, полистирола, поливинилхлорида, поликарбоната и т.д.), вставленного в него винтообразного струенаправяющего аппарата 2 со ступицей 3, шара 4, выполненного из диэлектрика, имеющего нулевую плавучесть в жидкости, который свободно может вращаться в кольцевом канале, возникающем между внутренней поверхностью корпуса 1 и внешней поверхностью ступицы 3.

Неподвижный винтообразный струенапрявляющий аппарат 2, представляет собой несколько лопастей, имеющих такую конфигурацию, чтобы преобразование входного линейного потока жидкости во вращающийся поток осуществлялось без его срывов и завихрений.

Радиоэлектронная часть УШРЖ, как показано на Фиг. 2, состоит из микромощного генератора высокой частоты на биполярном транзисторе VT1, двух амплитудных детекторов VD1, С4 и VD2, С5, нагруженных, соответственно, на сопротивления R4 и R5, и операционного усилителя (ОУ) DA1, функционирующего в режиме однопорогового компаратора.

Высокочастотный генератор построен по широко известной схеме индуктивной трехточки. Частота генерируемого синусоидального напряжения задается резонансной частотой L1C1-контура:

Плоская катушка индуктивности L1 закреплена в выточке 5 на корпусе 1 над кольцевым каналом и присоединяется, как показано на Фиг. 1 и Фиг. 2, к электронной схеме посредством контактов а, b и с.

Электромагнитной нагрузкой генератора является резонансной контур L2C2, находящийся внутри шара 4.

Резисторы R4, R5 и резистивный потенциометр R6 служат для фиксации начального состояния ОУ DA1 и его выходного напряжения Uвых.

Рассмотрим принцип действия радиоэлектронной части УШРЖ.

Пусть расходомер (Фиг. 2) находится в статическом состоянии, когда шар 4 неподвижен и находится на максимальном расстоянии от L1C1-контура генератора высокой частоты. В этом начальном состоянии УШРЖ влиянием нагрузочного L2C2-контура можно пренебречь, амплитуда высокочастотного синусоидального напряжения на коллекторе транзистора VT1 имеет величину, которая задается напряжением электропитания схемы Uп, сопротивлением R3, соотношением сопротивлений резисторов R1 и R2, емкостью конденсатора С3, отводом от индуктивности L1 и, наконец, зависит от добротности L1C1-контура.

После сборки УШРЖ необходимо выполнить настройку радиоэлектронной части, чтобы при вращении шара 4 в кольцевом канале возникало известное в радиоизмерительной технике явление гетеродинного резонанса.

Первый этап начальной настройки схемы - это настройка частоты синусоидального напряжения Uк на коллекторе транзистора VT1. С этой целью шар перемещается в кольцевом канале на минимальном расстоянии от L1C1-контура, как показано на Фиг. 1, и подстрочным конденсатором С1 устанавливается равенство резонансной частоты L2C2-контура, размещенного в шаре, и частоты синусоидального напряжения на коллекторе транзистора VT1:

при котором амплитуда высокочастотного напряжения Uк резко падает или даже прекращается генерация этого напряжения. Следует отметить, что динамический диапазон изменения выходного напряжения генератора Uк тем больше, чем меньше емкость конденсатора С3 и больше добротность L1C1-L2 С2-контуров, меньше расстояние между ними, а также зависит от конструктивного исполнения индуктивности L2, размещенной внутри шара, и конфигурации индуктивности L1.

Второй этап начальной настройки схемы заключается в фиксировании требуемого выходного напряжения ОУ DA1, когда шар находится на максимальном расстоянии от L1C1-контура генератора.

Так как ОУ DA1 работает в режиме однопорогового компаратора, то на его выходе напряжение Uвых может быть только предельно большим, почти равным напряжению питания Uп, или почти равным нулю.

Пусть в исходном состоянии требуется установить Uвых равное низкому напряжению. Тогда, принимая во внимание некоторую неидентичность параметров диодов VD1 и VD2, входные токи, их разность и приведенное ко входу напряжение смещения интегрального ОУ DA1, необходимо установить R4 ≠ R5 регулировочным резистивным потенциометром R6 так, чтобы U1>U2 на величину Uп/Ku, где Ku -минимально возможный коэффициент усиления по напряжению выбранного типа ОУ. При выполнении этой настройки, так как входные токи, их разности имеют наноамперный уровень, напряжение смещения - единицы милливольт, а Ku может достигать сотен тысяч у современных интегральных ОУ, практически получается равенство сопротивлений R4 и R5 с учетом R3, а их неравенство оценивается в десятые доли процента.

При анализе принципа действия УШРЖ допустимо принять, что сопротивления R4 и R5 равны и практически не нагружают амплитудные детекторы VD1, R4 и VD2, R5, поскольку они имеют очень большое сопротивление по сравнению с сопротивлениями прямосмещенных диодов VD1 и VD2.

Емкости конденсаторов С4 и С5 выбираются так, чтобы постоянная времени интегрирующей RVDC4-цепочки была значительно больше постоянной времени RVDC5-цепочки, где RVD - сопротивление смещенных в прямом направлении диодов VD1 и VD2, то есть RVDC4>>RVDC5 и С4>>С5.

Если при вращении шара в кольцевом канале он окажется под L1C1-контуром генератора, то напряжение Uк снизится, напряжение U1 уменьшится намного раньше, чем напряжение U2, поскольку С4>>С5, значит, дифференциальное напряжение U2 - U1>0 и ОУ DA1 «опрокинется» и напряжение Uвых будет практически равно напряжению питания Uп.

Когда шар будет выходить из зоны под L1C1-контуром, то напряжение U1 будет быстро увеличиваться, а напряжение U2 будет также возрастать, но медленно, поэтому дифференциальное напряжение U2 - U1<0 и ОУ DA1 вернется в исходное состояние, при котором выходное напряжение почти равно нулю.

Таким образом, за один оборот шара в кольцевом канале на выходе ОУ DA1 формируется один импульс напряжения Uвых. Так как нагрузка расходомера подключается к выходу ОУ DA1, она, независимо от ее вида и параметров, никак не может влиять на режим работы генератора. Более того, конденсаторы С4 и C5 защищают дифференциальные выходы ОУ DA1 от электрических помех, которые могут наводиться электромагнитными полями окружающей среды. В результате расширяется динамический диапазон измерения расхода любых жидкостей за счет нормирования импульсного выходного сигнала.

Похожие патенты RU2761416C1

название год авторы номер документа
РАДИО-ШАРИКОВЫЙ ПЕРВИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ЖИДКОСТИ 2018
  • Сафинов Шамиль Саидович
  • Кук Илья Андреевич
  • Уметбаев Фанис Сагитович
  • Бикбулатов Тимур Ринатович
RU2685798C1
Электронно-оптический шариковый расходомер жидкости 2024
  • Пущенко Денис Николаевич
  • Садыков Руслан Рашитович
  • Сафинов Шамиль Саидович
RU2826379C1
ШАРИКОВЫЙ ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПЕРВИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ПРОЗРАЧНЫХ ЖИДКОСТЕЙ 2014
  • Сафинов Шамиль Саидович
  • Галлямов Роберт Наилевич
RU2548055C1
Шариковый расходомер электропроводной жидкости 2022
  • Садыков Руслан Рашитович
  • Пущенко Денис Николаевич
  • Сафинов Шамиль Саидович
RU2777291C1
Шариковый расходомер электропроводной жидкости 2020
  • Пущенко Денис Николаевич
  • Садыков Руслан Рашитович
  • Сафинов Шамиль Саидович
RU2762946C1
Шариковый расходомер электропроводной жидкости 2023
  • Садыков Руслан Рашитович
  • Сафинов Шамиль Саидович
  • Пущенко Денис Николаевич
  • Ясовеев Васих Хаматович
RU2811675C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКИХ РЕЗОНАНСНЫХ КОЛЕБАНИЙ 2021
  • Кукушкин Владимир Юрьевич
RU2774986C1
СПОСОБ ОБРАБОТКИ ЖИДКОСТЕЙ ПЕРЕМЕННЫМ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ 2018
  • Кукушкин Владимир Юрьевич
RU2701926C1
УПРАВЛЯЕМЫЙ НАПРЯЖЕНИЕМ ГЕНЕРАТОР С МАЛЫМ УРОВНЕМ ФАЗОВЫХ ШУМОВ 2015
  • Савченко Михаил Петрович
  • Старовойтова Ольга Владимировна
RU2601170C1
ШАРИКОВЫЙ ПЕРВИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ЭЛЕКТРОПРОВОДНОЙ ЖИДКОСТИ 2011
  • Муллагалеев Андрей Михайлович
  • Сафинов Шамиль Саидович
RU2471154C1

Иллюстрации к изобретению RU 2 761 416 C1

Реферат патента 2021 года Универсальный шариковый расходомер жидкости

Изобретение относится к измерительной технике и может использоваться в расходометрии любых жидкостей - электропроводных и неэлектропроводных, прозрачных и непрозрачных, химически агрессивных и пожароопасных, взрывоопасных, ядовитых и опасных для окружающей среды - в химической, нефтедобывающей и нефтеперерабатывающей, пищевой и фармацевтической промышленности, в электро- и теплоэнергетике, в жилищно-коммунальном хозяйстве в автоматических системах учета водопотребления и в составе счетчика количества теплоты в водяных системах теплоснабжения. Шариковый расходомер жидкости состоит из диэлектрического корпуса, струенаправляющего аппарата, кольцевого канала, шара, изготовленного из диэлектрического материала и имеющего нулевую плавучесть в жидкости, внутри которого находится параллельный резонансный контур, генератора высокой частоты и амплитудного детектора, отличающийся тем, что электронная схема преобразователя содержит два амплитудных детектора, подключенных к выходу высокочастотного генератора, и операционный усилитель, работающий в режиме компаратора и управляемый выходными сигналами амплитудных детекторов. Технический результат - расширение динамического диапазона измерения расходов любых жидкостей за счет нормирования импульсного выходного сигнала. 2 ил.

Формула изобретения RU 2 761 416 C1

Универсальный шариковый расходомер жидкости, состоящий из диэлектрического корпуса, струенаправляющего аппарата, кольцевого канала, шара, изготовленного из диэлектрического материала и имеющего нулевую плавучесть в жидкости, внутри которого находится параллельный резонансный контур, генератора высокой частоты и амплитудного детектора, отличающийся тем, что электронная схема преобразователя содержит два амплитудных детектора, подключенных к выходу высокочастотного генератора, и операционный усилитель, работающий в режиме компаратора и управляемый выходными сигналами амплитудных детекторов.

Документы, цитированные в отчете о поиске Патент 2021 года RU2761416C1

РАДИО-ШАРИКОВЫЙ ПЕРВИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ЖИДКОСТИ 2018
  • Сафинов Шамиль Саидович
  • Кук Илья Андреевич
  • Уметбаев Фанис Сагитович
  • Бикбулатов Тимур Ринатович
RU2685798C1
WO 2018052293 A1, 22.03.2018
ШАРИКОВЫЙ ПЕРВИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ЭЛЕКТРОПРОВОДНОЙ ЖИДКОСТИ 2011
  • Муллагалеев Андрей Михайлович
  • Сафинов Шамиль Саидович
RU2471154C1
ШАРИКОВЫЙ ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПЕРВИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ПРОЗРАЧНЫХ ЖИДКОСТЕЙ 2014
  • Сафинов Шамиль Саидович
  • Галлямов Роберт Наилевич
RU2548055C1
Способ подготовки агломерационной шихты к спеканию 1975
  • Готовцев Анатолий Александрович
  • Фролов Юрий Андреевич
  • Берштейн Рувим Семенович
  • Крыжевский Аркадий Захарович
  • Росицкий Анатолий Михайлович
SU697581A1
US 4581943 A1, 15.04.1986.

RU 2 761 416 C1

Авторы

Пущенко Денис Николаевич

Садыков Руслан Рашитович

Сафинов Шамиль Саидович

Даты

2021-12-08Публикация

2021-01-12Подача