Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения тепла.
Известен гибридный фотоэлектрический модуль, в котором солнечные элементы электроизолированы от теплообменника, пространство между солнечными элементами и теплообменником, а также между стеклянным покрытием и теплообменником заполнено слоем силоксанового геля, защитное стеклянное покрытие выполнено в виде вакуумированного стеклопакета из двух стекол, теплообменник выполнен в виде герметичной камеры с патрубками для циркуляции теплоносителя, общая площадь соединенных солнечных элементов соизмерима с площадью верхнего основания корпуса теплообменника (патент РФ № 2546332, МПК Н02S 10/00, H01L 31/042 опубл. 10.04.2015, Бюл. №10).
Недостатком известного модуля является большая материалоемкость.
Наиболее близким к предлагаемому устройству является фотоэлектрический тепловой модуль, в котором теплообменник из нержавеющей стали выполнен с каналами теплоносителя V-образной, прямоугольной и сотовой формы (Mohd. Yusof Hj. Othman, Faridah Hussain, Kamaruzzman Sopian, Baharuddin Yatim & Hafidz Ruslan. Performance Study of Air-based Photovoltaic-thermal (PV/T) Collector with Different Designs of Heat Exchanger. Sains Malaysiana 42(9)(2013): 1319–1325).
Недостатками известного фотоэлектрического теплового модуля являются низкий коэффициент полезного действия, большая материалоемкость.
Задачей предлагаемого изобретения является повышение КПД гибридного солнечного модуля, снижение удельных затрат на получение тепловой энергии.
В результате использования предлагаемого изобретения увеличивается КПД гибридного солнечного модуля, увеличивается среднегодовая выработка тепловой энергии, снижается ее себестоимость, уменьшается масса модуля за счет того, что теплообменник выполнен в виде воздушного коллектора в прозрачном для солнечного излучения корпусе и установлен по всей площади защитного стеклянного покрытия, причем защитное стеклянное покрытие и теплообменник в виде воздушного коллектора расположены с двух сторон скоммутированных двухсторонних солнечных элементов.
Вышеуказанный технический результат достигается тем, что в гибридном солнечном модуле, содержащем защитное стеклянное покрытие, скоммутированные солнечные элементы и теплообменник, соединенный с системой горячего водоснабжения и отопления здания, согласно изобретению, теплообменник выполнен в виде воздушного коллектора с каналами для теплоносителя воздуха в прозрачном для солнечного излучения корпусе и установлен по площади защитного стеклянного покрытия, причем защитное стеклянное покрытие и теплообменник в виде воздушного коллектора расположены с двух сторон скоммутированных двухсторонних солнечных элементов, при этом для отопления здания воздушный коллектор присоединен теплоизолированным воздуховодом с вентилятором к системе воздушного отопления здания, для горячего водоснабжения воздушный коллектор присоединен через теплоизолированный воздуховод с вентилятором и теплообменником воздух-вода к системе горячего водоснабжения и отопления здания, а скоммутированные солнечные элементы через инвертор соединены с электроводонагревателем системы горячего водоснабжения здания.
В варианте гибридного солнечного модуля воздушный коллектор выполнен из сотового поликарбоната.
Сущность предлагаемого изобретения поясняется чертежами, где на фиг.1 представлена общая схема гибридного солнечного модуля, на фиг.2 показано присоединение воздушного коллектора к системам воздушного отопления, горячего водоснабжения и отопления здания.
Гибридный солнечный модуль состоит из защитного стеклянного покрытия 1, последовательно скоммутированных двухсторонних солнечных элементов 2 и теплообменника 3, выполненного в виде воздушного коллектора 4 каналами 5 для теплоносителя 6. Теплообменник 3 установлен по всей площади защитного стеклянного покрытия 1 и выполнен в виде воздушного коллектора 4 в прозрачном для солнечного излучения корпусе 7. В качестве теплоносителя 6 используется воздух. Защитное стеклянное покрытие 1 и теплообменник 3 расположены с двух сторон скоммутированных двухсторонних солнечных элементов 2. Для отопления здания воздушный коллектор 4 присоединен теплоизолированным воздуховодом 8 с вентилятором 9 к системе воздушного отопления здания 10, для горячего водоснабжения воздушный коллектор 4 присоединен через теплоизолированный воздуховод 8 с вентилятором 9 и теплообменником воздух-вода 11, к системе горячего водоснабжения и отопления здания 10. Скоммутированные двусторонние солнечные элементы 2 через инвертор 12 соединены с электроводонагревателем 13 системы горячего водоснабжения здания 10.
Гибридный солнечный модуль работает следующим образом.
Последовательно скоммутированные солнечные элементы 2 расположены непосредственно на поверхности теплообменника 3, установленного по всей площади защитного стеклянного покрытия 1, таким образом, что, поглощая ту часть солнечного спектра, которая необходима им для фотоэлектрического преобразования и выработки электроэнергии, они в свою очередь, отдают тепловую энергию для нагрева теплоносителя 6 (воздух) в каналах 5 теплообменника 3. Теплоноситель 6, циркулируя по каналам 5 теплообменника 3, охлаждает солнечные элементы 2, за счет чего растет эффективность их работы, увеличивается общий КПД гибридного солнечного модуля, нагретый теплоноситель используется потребителем для горячего водоснабжения и отопления здания. Для осуществления отопления здания 10 воздушный коллектор 4 присоединяется теплоизолированным воздуховодом 8 с вентилятором 9 к системе воздушного отопления здания 10. Для горячего водоснабжения здания 10 воздушный коллектор 4 присоединяется через теплоизолированный воздуховод 8 с вентилятором 9 и теплообменником воздух-вода 11 к системе горячего водоснабжения и отопления. Для обеспечения электроэнергией системы горячего водоснабжения здания 10 скоммутированные двусторонние солнечные элементы 2 через инвертор 12 соединяются с электроводонагревателем 13.
Пример выполнения гибридного солнечного модуля.
Гибридные солнечные модули установлены в шесть рядов в вертикальной плоскости, ориентированной в меридиональном направлении «юг-север». Рабочие поверхности гибридных солнечных модулей ориентированы на запад и восток. Размеры гибридных солнечных модулей: высота 0,6 м, длина 3 м.
В таблице 1 представлены результаты компьютерного моделирования тепловой энергии, вырабатываемой гибридными солнечными модулями по месяцам и в целом за год в кВтч/кВт при различной ориентации солнечных модулей для г. Элиста (Калмыкия) при коэффициенте отражения крыши 0,3 (бетон) и 0,9 (зеркальный отражатель). Отношение эффективности преобразования солнечного излучения тыльной поверхностью к фронтальной поверхности гибридного солнечного модуля принято равным 0,92.
Расчётные месячные суммы суммарной солнечной радиации (кВт·ч/м2) в окрестностях Элисты (Республика Калмыкия)
Пиковая тепловая мощность гибридных солнечных модулей составляет 100 кВт.
Использование гибридных солнечных модулей пиковой мощностью 1 кВт с ориентацией рабочих поверхностей на восток-запад позволяет увеличить производство тепловой энергии до 4898,4 кВт·ч на 1 кВт пиковой мощности гибридных солнечных модулей, что является максимально возможной величиной производства тепловой энергии для солнечных гибридных энергетических установок без систем слежения.
название | год | авторы | номер документа |
---|---|---|---|
Солнечная гибридная энергетическая установка для зданий | 2021 |
|
RU2755657C1 |
СОЛНЕЧНЫЙ ДОМ | 2021 |
|
RU2755204C1 |
Солнечный энергетический модуль, встроенный в фасад здания | 2021 |
|
RU2762310C1 |
Планарная кровельная панель с гофрированным тепловым фотоприёмником | 2020 |
|
RU2738738C1 |
Солнечная энергетическая установка с концентратором | 2021 |
|
RU2775175C1 |
Солнечный дом | 2018 |
|
RU2694066C1 |
Гибридный фотоэлектрический модуль | 2019 |
|
RU2731162C1 |
Когенерационная солнечная черепица | 2022 |
|
RU2799691C1 |
Гибридная кровельная солнечная панель | 2016 |
|
RU2612725C1 |
Система солнечного теплоснабжения и горячего водоснабжения | 2022 |
|
RU2780439C1 |
Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения тепла. Технический результат заключается в увеличении КПД, увеличении среднегодовой выработки тепловой энергии, снижении массогабаритных показателей. Технический результат достигается тем, что в гибридном солнечном модуле, содержащем защитное стеклянное покрытие, скоммутированные солнечные элементы и теплообменник, соединенный с системой горячего водоснабжения и отопления здания, теплообменник выполнен в виде воздушного коллектора с каналами для теплоносителя воздуха в прозрачном для солнечного излучения корпусе и установлен по площади защитного стеклянного покрытия, причем защитное стеклянное покрытие и теплообменник в виде воздушного коллектора расположены с двух сторон скоммутированных двухсторонних солнечных элементов, при этом для отопления здания воздушный коллектор присоединен теплоизолированным воздуховодом с вентилятором к системе воздушного отопления здания, для горячего водоснабжения воздушный коллектор присоединен через теплоизолированный воздуховод с вентилятором и теплообменником воздух-вода к системе горячего водоснабжения и отопления здания, а скоммутированные солнечные элементы через инвертор соединены с электроводонагревателем системы горячего водоснабжения здания. 1 з.п. ф-лы, 2 ил., 1 табл.
1. Гибридный солнечный модуль, содержащий защитное стеклянное покрытие, скоммутированные солнечные элементы и теплообменник, соединенный с системой горячего водоснабжения и отопления здания, отличающийся тем, что теплообменник выполнен в виде воздушного коллектора с каналами для теплоносителя воздуха в прозрачном для солнечного излучения корпусе и установлен по площади защитного стеклянного покрытия, причем защитное стеклянное покрытие и теплообменник в виде воздушного коллектора расположены с двух сторон скоммутированных двухсторонних солнечных элементов, при этом для отопления здания воздушный коллектор присоединен теплоизолированным воздуховодом с вентилятором к системе воздушного отопления здания, для горячего водоснабжения воздушный коллектор присоединен через теплоизолированный воздуховод с вентилятором и теплообменником воздух-вода к системе горячего водоснабжения и отопления здания, а скоммутированные солнечные элементы через инвертор соединены с электроводонагревателем системы горячего водоснабжения здания.
2. Гибридный солнечный модуль по п.1, отличающийся тем, что воздушный коллектор выполнен из сотового поликарбоната.
МОБИЛЬНЫЙ СОЛНЕЧНЫЙ ДОМ | 2010 |
|
RU2460863C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ БИОЛОГИЧЕСКОГО ВОЗРАСТА ЧЕЛОВЕКА МЕТОДОМ ЭКСПЕРТНЫХ ОЦЕНОК | 2015 |
|
RU2592358C1 |
СПОСОБ И УСТРОЙСТВО ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ | 2010 |
|
RU2446362C2 |
US 8288884 B1, 16.10.2012. |
Авторы
Даты
2022-01-11—Публикация
2021-04-14—Подача