ПРОНИЦАЕМЫЙ ДЛЯ ТЕКУЧЕЙ СРЕДЫ УЗЕЛ-НАГРЕВАТЕЛЬ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ И СПОСОБ СБОРКИ ПРОНИЦАЕМОГО ДЛЯ ТЕКУЧЕЙ СРЕДЫ НАГРЕВАТЕЛЯ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ Российский патент 2022 года по МПК A24F40/42 H05B3/34 

Описание патента на изобретение RU2765205C2

Настоящее изобретение относится к проницаемому для текучей среды узлу-нагревателю для генерирующих аэрозоль систем и к способу сборки проницаемого для текучей среды нагревателя. В частности, настоящее изобретение относится к проницаемому для текучей среды узлу-нагревателю для удерживаемых рукой генерирующих аэрозоль систем, таких как электрически управляемые курительные системы.

Некоторые генерирующие аэрозоль системы, такие как электрически управляемые курительные устройства, могут содержать батарею и управляющие электронные схемы, картридж, содержащий источник подачи образующего аэрозоль субстрата, и электрически управляемый испаритель. Вещество испаряют из образующего аэрозоль субстрата, например, с помощью нагревательного элемента. Нагревательный элемент может представлять собой нагреватель, по меньшей мере частично проницаемый для текучей среды, например, плоскую катушку, встроенную в керамический материал. Однако такие нагреватели дороги в производстве.

Существует необходимость в проницаемом для текучей среды узле-нагревателе для генерирующих аэрозоль систем, который был бы дешев и прост в производстве. Существует также необходимость в соответствующем способе сборки проницаемых для текучей среды нагревателей.

Согласно первому аспекту настоящего изобретения, обеспечен проницаемый для текучей среды узел-нагреватель для генерирующих аэрозоль систем, предпочтительно электрически управляемых курительных систем. Проницаемый для текучей среды узел-нагреватель содержит основу, предпочтительно электроизоляционную основу. Это основа содержит отверстие через эту основу. Узел-нагреватель дополнительно содержит электрически управляемую, по существу плоскую ниточную структуру, расположенную поверх отверстия в основе. Эта ниточная структура механически зафиксирована на основе с помощью средств крепления. Средства крепления являются также электропроводными и служат в качестве электрических контактов для обеспечения тока нагрева через ниточную структуру, а также для стабилизации ниточной структуры, зафиксированной на основе.

Предпочтительно узел-нагреватель собран с помощью только механических средств. Фиксацию ниточной структуры и основы друг на друге, а также обеспечение электрического контакта между ниточной структурой и контактом внешнего источника питания, например, батареи, осуществляют путем механической фиксации. Средства крепления обеспечивают прочную фиксацию ниточной структуры и надежный контакт между ниточной структурой и этими средствами крепления. Благодаря механической фиксации и обеспечению электрического контакта с ниточной структурой с помощью механических средств, исключена необходимость в пайке, сварке или травлении электрических контактов. Таким образом обеспечена возможность облегчения изготовления и снижения затрат на изготовление частей узла-нагревателя. Дополнительно обеспечена также возможность повышения обрабатываемости узла-нагревателя или его частей. В дополнение, механическая фиксация обеспечивает возможность повышения надежности узла-нагревателя благодаря исключению проблемных мест, обычных для пайки и сварки, таких как паяные соединения, полученные холодной пайкой, или сварные швы, полученные холодной сваркой. Эти места известны своей низкой прочностью, низкой стойкостью к нагрузкам и нестабильностью электрического сопротивления. В дополнение, ниточная структура не входит в непосредственный контакт с соединителями батареи генерирующей аэрозоль системы, и таким образом исключен разрыв ниточной структуры при введении нагревателя в систему.

В сочетании со способом сборки такого проницаемого для текучей среды нагревателя согласно настоящему изобретению, обеспечена возможность достижения в одном экономичном средстве сразу трех целей: фиксации ниточной структуры на основе, стабилизации ниточной структуры и обеспечения электрического соединителя для источника питания, например, батареи электронной сигареты. Средства крепления, соответствующий механизм фиксации ниточной структуры на основе и соответствующий сборочный процесс являются экономичными, стойкими к производственным манипуляциям, функционально эффективными, прочными и совместимыми с относительной малой площадью узла-нагревателя.

Термин «по существу плоский» используется по всему настоящему описанию в отношении ниточной структуры, которая имеет форму по существу двумерного топологического коллектора. Таким образом, по существу плоская ниточная структура вытянута в двух направлениях вдоль поверхности значительно больше, чем в третьем направлении. В частности, размеры по существу плоской ниточной структуры в двух направлениях вдоль поверхности составляют примерно в 5 раз больше, чем в третьем направлении, представляющем собой направление нормали к этой поверхности. Примером по существу плоской ниточной структуры является структура между двумя по существу параллельными воображаемыми плоскостями, в которой расстояние между этими двумя воображаемыми плоскостями значительно меньше, чем протяженность вдоль этих плоскостей. В некоторых вариантах по существу плоская ниточная структура является планарной. В других вариантах по существу плоская ниточная структура является криволинейной вдоль одного или более направлений, образуя, например, куполообразную форму или мостовую форму.

Термин «нить» (нить накала) используется по всему настоящему описанию для ссылки на электрический путь, расположенный между двумя электрическим контактами. Нить при необходимости может разветвляться и разделяться на множество путей или нитей, соответственно, или множество электрических путей может сходиться в один путь. Нить может иметь круглое, квадратное, плоское или любое другое поперечное сечение. Нить может быть расположена прямолинейно или криволинейно.

Термин «ниточная структура» используется по всему описанию для ссылки на структуру из одной или, предпочтительно, из множества нитей. Ниточная структура может представлять собой матрицу из нитей, расположенных, например, параллельно друг другу. Предпочтительно, нити могут образовывать сетку. Эта сетка может быть с переплетением (тканой) или без переплетения (нетканой). Предпочтительно, ниточная структура имеет толщину от примерно 0,5 микрон до примерно 500 микрон.

В качестве общего правила, когда термин «примерно» применяют в сочетании с конкретной величиной по всей данной заявке, следует понимать, что величина, следующая за термином «примерно», не обязательно должна точно равняться конкретной величине по техническим соображениям. Тем не менее, термин «примерно», используемый в сочетании с конкретной величиной, всегда следует понимать как включающий в себя и явным образом выражающий конкретную величину, следующую за термином «примерно».

Например, форма основы и ниточной структуры, зафиксированной на основе, может быть адаптирована к форме конца картриджа, заключающего в себе образующий аэрозоль субстрат. Этот конец картриджа может быть планарным, однако он может быть также криволинейным, например, иметь выпуклую форму.

Отверстие в основе может иметь по существу любую форму. Предпочтительно, это отверстие имеет простую форму, легкую в изготовлении, например, такую, как круглая, овальная или прямоугольная форма, иначе говоря, оно представляет собой цилиндр, имеющий круглое, овальное или прямоугольное основание, простирающийся сквозь основу. Предпочтительно, отверстие в основе включает по меньшей мере центральную часть основы. Эта центральная часть включает воображаемый центр тяжести основы. В качестве альтернативы или дополнительно, упомянутая центральная часть может содержать продольную ось, например, ось вращения, например, такую как ось вращения основы, выполненной в виде круглого диска.

По существу плоская ниточная структура закреплена поверх по меньшей мере части упомянутого отверстия с помощью средств крепления. Основа содержит крепежную поверхность, на которой в закрепленном состоянии размещается по существу плоская ниточная структура. Предпочтительно, крепежная поверхность представляет собой часть верхней поверхности основы. Крепежная поверхность может включать упомянутое отверстие, а также части верхней поверхности основы, смежные с этим отверстием. Предпочтительно, крепежная поверхность является планарной. Средства крепления прикладывают растягивающее усилие к ниточной структуре. Это растягивающее усилие направлено по меньшей мере в направлении, копланарном крепежной поверхности. Предпочтительно, растягивающее усилие прикладывают к ниточной структуре во время сборки нагревателя и предпочтительно в закрепленном состоянии ниточной структуры. Растягивающее усилие поддерживает планарное расположение ниточной структуры и способствует стабилизации ниточной структуры в плоскости основы. Предпочтительно, средства крепления прикладывают противоположно направленные растягивающие усилия к ниточной структуре, растягивая и стабилизируя ниточную структуру в плоскости.

Средства крепления могут содержать несколько отдельно расположенных элементов крепления, предпочтительно два отдельно расположенных элемента крепления. Предпочтительно, отдельные элементы крепления не находятся в непосредственном контакте друг с другом таким образом, чтобы эти элементы были отделены от двух контактов для подачи питания на нагреватель и нагрева ниточной структуры. Два и более элементов крепления могут служить в качестве первого электрического контакта для ниточной структуры. Два и более элементов крепления могут служить в качестве второго электрического контакта для ниточной структуры. Предпочтительно, средства крепления представляют собой два электропроводных элемента крепления, предпочтительно имеющих форму зажимов, зажимных скоб или скоб. Предпочтительно, средства крепления обеспечивают действие крепления вдоль линии, предотвращая таким образом повреждение или разрыв нитей из-за наличия лишь одной точки фиксации. Предпочтительно, два элемента крепления расположены один напротив другого, например, на противоположных боковых сторонах основы. Предпочтительно, узел-нагреватель содержит лишь несколько компонентов, например, таких, как основа, ниточная структура и два элемента крепления. Средства крепления могут также иметь форму, адаптированную к форме внешнего соединителя, для упрощения соединения и улучшения внешнего электрического контакта.

Проницаемые для текучей среды узлы-нагреватели пригодны для испарения жидкостей из различных видов картриджей. Например, в качестве образующего аэрозоль субстрата картридж может заключать в себе жидкость или содержащий жидкость транспортный материал, например, такой как капиллярный материал. Такие транспортный материал и капиллярный материал активно транспортируют жидкость и предпочтительно ориентированы в картридже таким образом, чтобы транспортировать жидкость к узлу-нагревателю. Ниточная структура расположена вплотную к жидкости или к содержащему жидкость капиллярному материалу таким образом, чтобы обеспечивать возможность испарения жидкости под действием тепла, создаваемого ниточной структурой. Предпочтительно, ниточная структура и образующий аэрозоль субстрат расположены таким образом, чтобы обеспечивать возможность втекания жидкости в ниточную структуру за счет капиллярного действия. Ниточная структура может также находиться в физическом контакте с капиллярным материалом.

Электропроводные нити могут образовывать промежутки между собой, и эти промежутки могут иметь ширину от 10 микрон до 100 микрон. Предпочтительно, нити создают капиллярный эффект в упомянутых промежутках, и таким образом жидкость, подлежащая испарению, при использовании втягивается в эти промежутки, увеличивая площадь контакта между узлом-нагревателем и жидкостью. Электропроводные нити могут образовывать сетку с размерами от 160 меш США до 600 меш США (плюс-минус 10 процентов (иначе говоря, от 160 до 600 нитей на дюйм (плюс-минус 10 процентов))). Ширина упомянутых промежутков предпочтительно составляет от 75 микрон до 25 микрон.

Относительная открытая площадь сетки, представляющая собой отношение площади промежутков к общей площади сетки, предпочтительно составляет от 25 до 60 процентов. Сетка может быть выполнена с использованием различных типов плетеных или решетчатых структур.

Ниточная структура может также характеризоваться своей способностью удерживать жидкость, как хорошо известно в данной области техники.

Электропроводные нити могут иметь диаметр от 10 микрон до 100 микрон, предпочтительно - от 8 микрон до 50 микрон и более предпочтительно - от 8 микрон до 40 микрон. Площадь ниточной структуры может быть небольшой, предпочтительно не более 25 квадратных миллиметров, обеспечивая возможность встраивания этой структуры в удерживаемую рукой систему. Ниточная структура может быть, например, прямоугольной и иметь размеры 5 миллиметров на 2 миллиметра в закрепленном состоянии. Предпочтительно, ниточная структура занимает площадь, составляющую от 10 процентов до 50 процентов площади узла-нагревателя. Более предпочтительно, ниточная структура занимает площадь, составляющую от 15 до 25 процентов площади узла-нагревателя.

Ниточная структура может быть выполнена путем травления листового материала, такого как фольга. Это может быть особенно выгодным в том случае, если узел-нагреватель содержит матрицу параллельных нитей. Если узел-нагреватель содержит сетку, нити могут быть выполнены по отдельности и связаны или переплетены друг с другом.

Нити узла-нагревателя могут быть выполнены из любого материала с подходящими электрическими свойствами. Подходящие материалы включают, но без ограничения: полупроводники, такие как легированная керамика, электрически "проводящая" керамика (например, такая, как дисилицид молибдена), углерод, графит, металлы, сплавы металлов и композиционные материалы, изготовленные из керамического материала и металлического материала. Такие композиционные материалы могут содержать легированную или нелегированную керамику. Примеры подходящей легированной керамики включают легированные карбиды кремния. Примеры подходящих металлов включают титан, цирконий, тантал и металлы платиновой группы. Примеры подходящих сплавов металлов включают нержавеющую сталь, константан, никель-, кобальт-, хром-, алюминий-, титан-, цирконий-, гафний-, ниобий-, молибден-, тантал-, вольфрам-, олово-, галлий-, марганец- и железосодержащие сплавы, а также суперсплавы на основе никеля, железа, кобальта, нержавеющей стали, Timetal®, сплавы на основе железа и алюминия и сплавы на основе железа, марганца и алюминия. Timetal® представляет собой зарегистрированную торговую марку компании Titanium Metals Corporation. Нити могут быть покрыты одним или более изоляторами. Предпочтительными материалами для электропроводных нитей являются нержавеющая сталь 304, 316, 304L, 315L и графит.

Электрическое сопротивление ниточной структуры предпочтительно составляет от 0,3 Ом до 4 Ом. Более предпочтительно, электрическое сопротивление ниточной структуры составляет от 0,5 Ом до 3 Ом и еще более предпочтительно - примерно 1 Ом. Электрическое сопротивление ниточной структуры предпочтительно составляет по меньшей мере на порядок и более предпочтительно по меньшей мере на два порядка больше, чем электрическое сопротивление частей контакта. Таким образом предусмотрено, чтобы тепло, создаваемое при прохождении тока через узел-нагреватель, локализовалось в ниточной структуре. Выгодно иметь низкое общее сопротивление узла-нагревателя, если система получает питание от батареи. Система с низким сопротивлением и высоким током обеспечивает возможность подачи высокой мощности на нагревательный элемент. Таким образом обеспечена возможность быстрого нагрева нагревательным элементом электропроводной ниточной структуры до желаемой температуры.

Узел-нагреватель может содержать по меньшей мере одну нить, выполненную из первого материала, и по меньшей мере одну нить, выполненную из второго материала, отличного от первого материала. Это может быть выгодно по электрическим или механическим причинам. Например, одна или более нитей могут быть выполнены из материала, сопротивление которого сильно изменяется в зависимости от температуры, например, такого как сплав железа и алюминия. Таким образом обеспечена возможность использования величины сопротивления нитей для определения температуры или изменений температуры. Это может быть использовано в системе обнаружения затяжки. В качестве альтернативы или дополнительно, это может быть использовано для регулирования температуры нагревателя, чтобы поддерживать ее в пределах желаемого температурного диапазона. Резкие изменения температуры могут также использоваться в качестве показателей для обнаружения изменений расхода воздуха после узла-нагревателя в результате затяжки пользователем на электрически управляемой курительной системе. Предпочтительный вариант ниточного материала этого типа представляет собой, например, матрицу параллельных нитей из первого материала, расположенную над матрицей параллельных нитей из второго материала, причем эти матрицы повернуты относительно друг друга с образованием сетки. Комбинация материалов может также использоваться для улучшения регулируемости сопротивления по существу плоской ниточной структуры. Например, материалы с высоким собственным сопротивлением могут комбинироваться с материалами с низким собственным сопротивлением. Это может обеспечить преимущество в том случае, если один из материалов является более предпочтительным по другим причинам, например, исходя из цены, обрабатываемости или других физических и химических параметров. Например, один из материалов может представлять собой нержавеющую сталь.

Предпочтительно, основа узла-нагревателя является электроизоляционной. Эта электроизоляционная основа может содержать любой подходящий материал, и предпочтительно, чтобы этот материал был способен выдерживать высокие температуры (свыше 300 градусов Цельсия) и резкие изменения температуры. Примером подходящего материала является пленка из полиимидного материала, такого как Kapton®, полиэфирэфиркетона (РЕЕК) или из керамического материала, предпочтительно - из электроизоляционного керамического материала с открытыми порами. Предпочтительно, материал основы является нехрупким. Материал основы может обладать капиллярным действием в отношении жидкости, подлежащей испарению.

Предпочтительно, основа является по существу плоской. Предпочтительно, основа представляет собой диск, который может быть, например, круглым, овальным или прямоугольным. Этот диск может быть планарным или криволинейным. Предпочтительно, основа содержит также планарную крепежную поверхность, при размещении ориентируемую в сторону картриджа, заключающего в себе образующий аэрозоль субстрат, таким образом, чтобы узел-нагреватель и картридж или покрытие картриджа соответственно имели планарную поверхность контакта. Таким образом обеспечена возможность размещения заподлицо картриджа и узла-нагревателя.

В соответствии с аспектом проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, средства крепления, механически фиксирующие ниточную структуру на основе, обеспечивают смыкание с основой с согласованием по форме или с прессовой посадкой. Смыкание с согласованием по форме или с прессовой посадкой представляют собой два типа механической фиксации, которые просты и надежны при механической фиксации компонентов друг на друге. Эти два типа смыкания могут комбинироваться. При смыкании с согласованием по форме, средства крепления и основа имеют соответствующие формы. Фиксация может осуществляться главным образом или исключительно за счет сил трения между контактными поверхностями средств крепления и основы в области контакта. Тем не менее, может быть также обеспечено смыкание с согласованием по форме, например, путем охвата нитей и основы средствами крепления. При смыкании с прессовой посадкой средства крепления и/или основа могут содержать упругие части, например, гибкие ножки или пружинные элементы. Усилие, прикладываемое средствами крепления или частями средств крепления, удерживает ниточную структуру в состоянии фиксации на основе.

Смыкания с согласованием по форме и с прессовой посадкой могут также комбинироваться в механизме крепления средств крепления и основы. Например, средства крепления могут заключать в себе части, выполненные из упругого материала. В качестве альтернативы или дополнительно, средства крепления могут иметь форму, которая отличается от формы соответствующей части основы. Например, коническая ножка средств крепления может быть вставлена в выемку основы, имеющую параллельные внутренние стенки.

В соответствии с другим аспектом проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, средства крепления простираются поверх части боковой стороны основы и содержат упругие ножки. Эти упругие ножки прижимают ниточную структуру к верхней поверхности основы. При этом ниточная структура и основа расположены между упругими ножками. Ниточная структура и основа зафиксированы между упругими ножками, например, ножками в виде листовых пружин, средств крепления. Упругим усилием, создаваемым упругими ножками, определяется усилие крепления. Часть средств крепления, выступающая за боковую сторону основы, может использоваться в качестве электрического контакта для внешнего источника питания. Благодаря этому обеспечена возможность электрического контакта с узлом-нагревателем с верхней или нижней стороны и при этом с боковой стороны или только с боковой стороны. Таким образом обеспечена возможность упрощения контакта узла-нагревателя с электрическими соединителями, расположенными вдоль внутренней поверхности стенок главного корпуса генерирующей аэрозоль системы. Контакт может быть также улучшен благодаря обеспечению возможности контакта соединителей с более чем одной стороной узла-нагревателя.

В соответствии с еще одним аспектом проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, основа содержит выемки для размещения в них ниточной структуры и средств крепления. Выемки обеспечивают возможность улучшения фиксации ниточной структуры и контакта с нею благодаря локализации области контакта со средствами крепления на основе или внутри него. Выемки обеспечивают также возможность содействия заданию области контакта, например, положения или размера области контакта. Выемки обеспечивают также возможность, например, ограничения или предотвращения смещения, например, скольжения, средств крепления с основы или по ниточной структуре в процессе сборки или в собранном состоянии. Выемки могут быть выполнены в поверхности основы, предпочтительно в верхней поверхности основы и нижней поверхности основы. Выемки могут быть выполнены в части основы по глубине или они могут простираться сквозь всю основу. Выемки могут представлять собой, например, канавки, отверстия или щели.

В соответствии с аспектом проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, средства крепления представляют собой скобчатые элементы, вставляемые в выемки основы. Эти скобчатые элементы являются по существу u-образными и имеют три ножки и мостиковую часть между ножками. Скобчатые элементы просты в изготовлении и дешевы. Скобчатые элементы могут быть легко прикреплены к основе, например, путем линейного нажимного действия. Таким образом обеспечена возможность вставки ножек скобчатых элементов в отверстия или выемки основы при нахождении ниточной структуры между основой и скобчатыми элементами. В процессе сборки отсутствует опасность смещения ниточной структуры, поскольку она зафиксирована при контакте со средствами крепления и основой. Скобчатые элементы допускают различные механизмы крепления или их варианты. Например, в случае смыкания с согласованием по форме, ножки могут быть вставлены в отверстия в основе, и выступающие концы ножек могут быть загнуты на нижнюю поверхность основы, обеспечивая дополнительную фиксацию средств крепления на основе. Кроме того, в случае использования скобчатых элементов фиксация ниточной структуры, а также поверхностей для электрического контакта между ниточной структурой и средствами крепления может быть улучшена с помощью простых средств. В некоторых предпочтительных вариантах это осуществляют с помощью выемок и скобчатых элементов, содержащих соответствующие, но непланарные поверхности контакта. В данном описании термин «непланарные поверхности контакта» следует понимать как включающий поверхности контакта, которые состоят из нескольких локальных поверхностей контакта, и эти локальные поверхности контакта могут быть плоскими, но при этом располагаться под углом друг к другу таким образом, чтобы результирующая поверхность контакта была непланарной.

Увеличенная площадь контакта обеспечивает хороший электрический контакт между нитями и средствами крепления. Благодаря дополнительной структуре на поверхности контакта, обеспечена также возможность улучшения фиксации ниточной структуры. Обеспечена возможность повышения растягивающего усилия, действующего на ниточную структуру, что повышает стабильность ниточной структуры. Обращенная к выемке основы сторона скобчатого элемента может иметь непланарную форму. Непланарную форму может также иметь та сторона скобчатого элемента, которая должна быть приведена в контакт с соединителем батареи. Таким образом обеспечена возможность увеличения и оптимизации области контакта между средствами крепления и внешним соединителем.

В соответствии с другим аспектом проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, упомянутые выемки представляют собой одну или комбинацию продольных выемок, простирающихся по меньшей мере через часть верхней поверхности основы, отдельные сквозные отверстия внутри основы или выемки в окружной поверхности основы. Различные виды выемок допускают широкий выбор механизмов крепления и различные варианты форм основы и средств крепления. Предпочтительно, продольные выемки, выполненные в верхней поверхности основы, обеспечивают большие площади контакта. Продольные выемки могут простираться через часть или через всю верхнюю поверхность основы. Кроме того, продольные выемки могут быть выполнены в нижней поверхности. Продольные выемки обеспечивают возможность использования плоских конструкций узла-нагревателя благодаря зенковке, доступной для средств крепления в выемках. Продольные выемки в верхней поверхности основы особо предпочтительны для средств крепления, которые простираются поверх боковой стороны основы, и для средств крепления, имеющих выступающие упругие ножки, которые полностью вставляются в выемки. В последних вариантах усилие крепления действует внутри основы. Продольные выемки обеспечивают также возможность улучшения фиксации в случае, когда продольные кромки средств крепления прижаты к верхней поверхности и нижней поверхности основы.

Отверстия или выемки в окружной поверхности основы обеспечивают возможность осуществления смыкания по форме между средствами крепления и основой путем обеспечения средств крепления на верхней поверхности и на нижней поверхности, но при этом без добавления материала к боковой стороне узла-нагревателя. Таким образом, использование узла-нагревателя не потребует ограничения размеров, например, главного корпуса системы.

В некоторых предпочтительных вариантах реализации проницаемого для текучей среды узла-нагревателя, средства крепления содержат упругие ножки, которые размещают и фиксируют внутри продольных выемок. В этих вариантах усилие крепления действует в поперечном направлении основы и внутри основы. Средства крепления, в частности, действие крепления упругих ножек, размещенных внутри выемок, хорошо защищены от влияния внешних элементов, например, системных элементов, размещенных на верхней или нижней поверхности узла-нагревателя. Таким образом, обеспечена возможность предотвращения эффекта ослабления действия крепления, например, путем прижатия стенки корпуса к средствам крепления. Предпочтительно, средства крепления утоплены в основу, еще более предпочтительно по существу полностью утоплены в основу, за исключением плоской области контакта. Это облегчает манипулирование основой в процессе изготовления очень компактного узла-нагревателя.

Ниточная структура может частично или полностью простираться поверх отверстия в основе. Предпочтительно, ниточная структура занимает от примерно 50 процентов до примерно 95 процентов площади упомянутого отверстия, например, она занимает от примерно 70 процентов до примерно 90 процентов площади отверстия в основе.

Если ниточная структура занимает всю площадь отверстия, происходит нагрев максимально доступной области поверхности жидкости или образующего аэрозоль субстрата, расположенных рядом с нагревателем. Таким образом обеспечено сильное испарение, поскольку тепло воздействует на большую площадь. В дополнение, в зависимости от вида образующего аэрозоль субстрата, например, в случае капиллярного материала, транспортирующего жидкость к нагревателю, благодаря большой нагреваемой площади обеспечена возможность поддержки гомогенного дренажа образующего аэрозоль субстрата. При этом область, не занятая по существу плоской ниточной структурой, может иным образом воздействовать на генерирование аэрозоля через расход и размер капель. Это может быть полезно для оптимизации генерирования аэрозоля с предварительно заданными характеристиками воспроизводимым образом. Например, если ниточная структура занимает не всю площадь отверстия, обеспечена возможность более легкого прохождения испаряемой жидкости через узел-нагреватель в тех областях, которые не заняты ниточной структурой. Таким образом обеспечена возможность поддержки образования аэрозоля.

Предпочтительно, по существу плоская ниточная структура находится в непосредственном контакте с капиллярным материалом, транспортирующим жидкость к нагревателю. Это облегчает создание непрерывного потока жидкости к по существу плоской ниточной структуре для генерирования аэрозоля. Предпочтительно, транспортная среда является гомогенной.

В некоторых предпочтительных вариантах проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, ниточная структура содержит множество нитей, образующих сетку.

Эта сетка обеспечивает стабильность и прочность ниточной структуры. Она также обеспечивает более простое манипулирование в процессе изготовления, чем, например, в случае матрицы нитей, расположенных параллельно друг другу. В дополнение, обеспечена возможность выбора и варьирования способности сетки к удержанию жидкости между нитями, например, путем варьирования типа переплетения или структуры сетки. Сетка является прочной в конструкционном смысле: таким образом, сетка имеет превосходные отказоустойчивые свойства благодаря резервированию доступных электрических путей. Даже если одна нить сетки порвана или не полностью контактирует с нагревателем, обеспечена возможность дальнейшего функционирования ниточной структуры лишь с небольшим изменением общих электрических и термических характеристик.

В некоторых предпочтительных вариантах проницаемого для текучей среды узла-нагревателя согласно настоящему изобретению, основа представляет собой электроизоляционный, по существу плоский, предпочтительно дискообразный элемент. Плоский узел-нагреватель является компактным и обеспечивает легкое манипулирование при изготовлении и сборке системы.

Согласно еще одному аспекту настоящего изобретения, предложен способ сборки сетчатого нагревателя для генерирующей аэрозоль системы. Этот способ содержит этапы, на которых обеспечивают основу, выполняют отверстие через основу и размещают электропроводные нити поверх отверстия в основе. На следующих этапах способа механически фиксируют нити на основе с помощью средств крепления, прижимая таким образом нити к основе, и обеспечивают электрический контакт с нитями через средства крепления.

В соответствии с аспектом способа согласно настоящему изобретению, способ дополнительно содержит этап, на котором выполняют выемки в основе и вдавливают средства крепления в эти выемки. С помощью этого вдавливания обеспечена возможность приложения средств крепления к структуре нить-основа в результате линейного перемещения. Таким образом обеспечена возможность сборки нагревателя за один этап фиксации. Вдавливание может осуществляться по существу перпендикулярно основе или по существу параллельно основе. Вдавливание по существу перпендикулярно основе относится к вдавливанию в верхнюю поверхность из точки, расположенной над основой. Вдавливание по существу параллельно основе относится к приложению средств крепления с боковой стороны основы или к приложению средств крепления путем их скольжения по структуре нить-основа.

Предпочтительно, на этапе вставки средств крепления создают растягивающее усилие в направлении плоскости по существу плоской ниточной структуры. Благодаря этому обеспечивают преимущество, состоящее в растяжении по существу плоской ниточной структуры до предварительно заданной степени натяжения. Таким образом обеспечивают возможность улучшенного поверхностного контакта между по существу плоской ниточной структурой и основой. Дополнительно, таким образом обеспечивают возможность улучшенного поверхностного контакта между ниточной структурой и транспортной средой.

В соответствии с другим аспектом способа согласно настоящему изобретению, усилие крепления прикладывают в направлении, по существу перпендикулярном верхней поверхности основы. Типовыми примерами таких вариантов являются средства крепления типа «сэндвич», когда ниточная структура и основа зажимаются между частями средств крепления.

В соответствии с другим аспектом способа согласно настоящему изобретению, усилие крепления прикладывают в направлении, по существу параллельном верхней поверхности, и внутри основы. Примерами таких вариантов реализации являются средства крепления, которые размещают внутри основы, предпочтительно внутри выемки основы, выполненной для размещения в ней средств крепления или части средств крепления, предусмотренных для фиксации. Другую часть средств крепления, предусмотренную для электрического контакта с средствами крепления, затем размещают снаружи упомянутой выемки.

В соответствии с другим аспектом способа согласно настоящему изобретению, ниточная структура включает первую часть и вторые части, которые образуют объединенную нить, при этом вторые части расположены на любом конце ниточной структуры, и первая часть расположена межу вторыми частями. В контексте данного описания термин «объединенная» означает, что первая часть и вторые части образуют единое тело, которое обеспечивает электрический путь от одной второй части к другой второй части через первую часть.

В такой конфигурации вторые части могут быть выполнены из материала, отличного от материала первой части, или, в качестве альтернативы или дополнительно, они могут быть выполнены из одного и того же материала, но иметь разную форму. Например, в случае, если ниточная структура содержит сетку, вторые части могут отличаться по форме от первой части за счет более высокой плотности сетки по сравнению с первой частью. В качестве альтернативы, ниточная структура может быть выполнена с использованием двух различных материалов для первой части и для вторых частей, при этом материал, образующий вторые части, является более пластичным и легче поддается деформации, чем материал первой части. В этом случае, например, первая часть может быть выполнена из нержавеющей стали, а вторые части могут быть выполнены из меди. В качестве альтернативы, вторые части могут быть выполнены из фольги и между ними может быть расположена первая часть таким образом, чтобы первая часть и вторые части образовывали объединенную нить.

Если ниточная структура содержит первую и вторые части, эта ниточная структура может быть подвергнута дополнительному этапу обработки, на котором к вторым частям прикладывают достаточное усилие таким образом, чтобы они образовали материал в виде фольги. В контексте данного описания «материал в виде фольги» представляет собой материал, подвергнутый действию усилия, которое расплющило этот материал при сохранении объединенной нити.

Дополнительные аспекты и преимущества способа согласно настоящему изобретению были раскрыты выше в отношении проницаемого для текучей среды узла-нагревателя и не будут описаны повторно.

Согласно еще одному аспекту настоящего изобретения обеспечена генерирующая аэрозоль система, предпочтительно - электрически управляемая курительная система. Генерирующая аэрозоль система содержит контейнерную часть (хранилище), имеющую корпус для хранения жидкого образующего аэрозоль субстрата, при этом корпус имеет открытый конец. Система дополнительно содержит проницаемый для текучей среды узел-нагреватель согласно настоящему изобретению, описанный выше. Этот узел-нагреватель расположен после упомянутого корпуса таким образом, чтобы ниточная структура проницаемого для текучей среды узла-нагревателя была расположена поверх открытого конца корпуса. Система дополнительно содержит соединитель источника питания для электрического подключения средств крепления проницаемого для текучей среды узла-нагревателя к источнику питания.

Преимущества и аспекты генерирующей аэрозоль системы были описаны выше в отношении узла-нагревателя и не будут описаны повторно. Благодаря имеющимся в наличии вариантам средств крепления и соответствующим вариантам узла-нагревателя, обеспечена возможность адаптации и изготовления узла-нагревателя, например, таким образом, чтобы он был пригоден для существующих главных корпусов упомянутых систем. Эти главные корпусы уже могут включать картридж, заключающий в себе образующий аэрозоль субстрат, электрическую схему, источник питания и электрические соединители для контакта с узлом-нагревателем.

Контейнерная часть предпочтительно заключает в себе капиллярный материал. Капиллярный материал может иметь волокнистую или губчатую структуру. Капиллярный материал предпочтительно содержит пучок капилляров. Например, капиллярный материал может содержать множество волокон или нитей или других тонких трубок с каналами. Волокна или нити могут быть по существу выровнены для передачи жидкости к нагревателю. В качестве альтернативы, капиллярный материал может содержать губкообразный или пенообразный материал. Структура капиллярного материала образует множество небольших каналов или трубок, сквозь которые может транспортироваться жидкость за счет капиллярного действия. Капиллярный материал может содержать любой подходящий материал или комбинацию материалов. Примеры подходящих материалов представляют собой губчатый или вспененный материал, материалы на основе керамики или графита в виде волокон или спеченных порошков, вспененные металлические или пластиковые материалы, волокнистый материал, например, выполненный из крученых или экструдированных волокон, таких как ацетилцеллюлозные, полиэфирные, териленовые или полипропиленовые волокна, нейлоновые волокна, или керамику. Капиллярный материал может иметь любую подходящую капиллярность таким образом, чтобы использовать его для жидкостей с различными физическими свойствами. Жидкость имеет физические свойства, включая, но без ограничения, вязкость, поверхностное натяжение, плотность, теплопроводность, температуру кипения и давление пара, которые обеспечивают возможность транспортировки жидкости по капиллярному материалу за счет капиллярного действия.

Предпочтительно, капиллярный материал находится в контакте с электропроводными нитями. Капиллярный материал может простираться внутри промежутков между нитями. Узел-нагреватель может втягивать жидкий образующий аэрозоль субстрат внутрь упомянутых промежутков за счет капиллярного действия. Капиллярный материал может находиться в контакте с электропроводными нитями по существу на всем протяжении упомянутого отверстия. Картридж может заключать в себе два или более различных капиллярных материалов, при этом первый капиллярный материал, находящийся в контакте с нагревательным элементом, имеет более высокую температуру теплового разложения, а второй материал, находящийся в контакте с первым капиллярным материалом, но не находящийся в контакте с нагревательным элементом, имеет более низкую температуру теплового разложения. Первый капиллярный материал эффективно действует как разделитель, отделяющий нагревательный элемент от второго капиллярного материала таким образом, чтобы этот второй капиллярный материал не подвергался воздействию температур, превышающих его температуру теплового разложения. В контексте данного описания термин «температура термического разложения» означает температуру, при которой материал начинает разлагаться и терять массу в результате образования газообразных продуктов. Второй капиллярный материал обеспечивает преимущество, состоящее в возможности занятия большего объема, чем первый капиллярный материал, и в возможности удержания большего количества образующего аэрозоль субстрата, чем первый капиллярный материал. Второй капиллярный материал может иметь превосходящую капиллярную характеристику по сравнению с первым капиллярным материалом. Второй капиллярный материал может быть более дешевым, чем первый капиллярный материал. Второй капиллярный материал может представлять собой полипропилен.

Первый капиллярный материал может отделять узел-нагреватель от второго капиллярного материала расстоянием по меньшей мере 1,5 миллиметра, предпочтительно от 1,5 миллиметра до 2 миллиметров, с целью обеспечения достаточного снижения температуры за первым капиллярным материалом.

Контейнерная часть может быть расположена с одной стороны электропроводных нитей, а канал воздушного потока - с противоположной стороны электропроводных нитей относительно контейнерной части таким образом, чтобы воздушный поток после электропроводных нитей захватывал испаренный образующий аэрозоль субстрат.

Система может дополнительно содержать электрическую схему, соединенную с узлом-нагревателем и электрическим источником питания; эта электрическая схема выполнена с возможностью контроля электрического сопротивления узла-нагревателя или одной или более нитей узла-нагревателя, и с возможностью управления подачей питания на узел-нагреватель, в зависимости от электрического сопротивления узла-нагревателя или одной или более нитей.

Электрическая схема может содержать микропроцессор, который может представлять собой программируемый микропроцессор. Электрическая схема может содержать дополнительные электронные компоненты. Электрическая схема может быть выполнена с возможностью регулирования подачи питания на узел-нагреватель. Питание может подаваться на узел-нагреватель непрерывно после активации системы или может подаваться с перерывами, например, от затяжки к затяжке.

Питание может подаваться на узел-нагреватель в виде импульсов электрического тока.

Преимущество системы состоит в том, что она содержит источник питания, обычно батарею, внутри главной части корпуса. В качестве альтернативы, источник питания может представлять собой устройство накопления заряда другого типа, такое как конденсатор. Источник питания может иметь достаточно большую емкость для того, чтобы обеспечивать возможность непрерывного генерирования аэрозоля в течение периода времени, составляющего примерно 6 минут. В другом примере источник питания может иметь достаточную емкость для того, чтобы обеспечить возможность осуществления предварительно заданного количества активаций узла-нагревателя.

Далее настоящее изобретение будет описано в отношении вариантов его реализации, которые проиллюстрированы следующими графическими материалами, где:

На фиг.1 показан вариант реализации узла-нагревателя;

На фиг.2 показан узел-нагреватель по п.1 в установленном состоянии;

На фиг.3а, 3b показаны детали механизмов крепления;

На фиг.4а-4d показаны дополнительные средства крепления и механизмы крепления.

На фиг.5а, 5b показаны виды сверху узла-нагревателя;

На фиг.6а-6с показан узел-нагреватель с боковыми скользящими средствами (фиг.6а) крепления; детали механизма (фиг.6b) крепления; и средства (фиг.6с) крепления;

На фиг.7а, 7b показан узел-нагреватель со скобами в качестве зажимных средств и детали частей поперечного сечения основы;

На фиг.8 показан еще один вариант реализации узла-нагревателя со скобами в качестве средств крепления;

На фиг.9 показаны узлы-нагреватели с установленными скобками;

На фиг.10 показан еще один вариант реализации узла-нагревателя со скобами в качестве средств крепления;

На фиг.11а-11d показаны ниточные структуры, имеющие первую и вторые части, и способы изготовления объединенных нитей.

На упомянутых чертежах одинаковые ссылочные номера используются для обозначения одинаковых или сходных элементов.

На фиг.1 и фиг.2 показан узел-нагреватель, включающий электроизоляционную основу 1, нагревательный элемент, ниточную структуру в виде сетки 2 и два зажима 3 для прикрепления сетки к основе. Основа 1 имеет форму круглого диска и содержит расположенное в центре отверстие 100. Основа содержит также две щели 4, расположенные параллельно друг другу рядом с соответствующими сторонами квадратного отверстия 100. Сетка 2 в форме полосы расположена поверх отверстия и щелей 4. Ширина сетки меньше, чем ширина отверстия 100, и таким образом с обеих боковых сторон сетки образованы открытые части 101 упомянутого отверстия, не закрытые сеткой. Два зажима 3 содержат плоские контактные части 31, которые должны быть расположены параллельно верхней поверхности основы. Контактные части 31 предназначены для контакта с узлом-нагревателем посредством электрического соединителя, отходящего от батареи. Два зажима 3 содержат также продольные загнутые части 30 крепления, вставляемые в щели 4 основы 1.

Зажимы 3 могут быть изготовлены путем сгибания из металлической заготовки, например, такой как лист из нержавеющей стали или из меди.

На фиг.2 показан узел-нагреватель в собранном состоянии, при этом сетка 2 вдавлена внутрь щелей 4 при вдавливании зажимов 3 перпендикулярно верхней поверхности основы в щели (направление вдавливания показано стрелками на фиг.1). С помощью зажимов 3 обеспечено растягивающее усилие 5, действующее на сетку 2 в направлении, копланарном верхней поверхности основы 1. Оба зажима 3 создают растягивающие усилия 5, действующие во взаимно противоположных направлениях. Растягивающие усилия 5 поддерживают планарное расположение сетки 2 и способствуют стабилизации сетки в плоскости основы 1.

На фиг.3а показан подробный вид зажима 3, вставленного в щель 4. Концевые части 20 сетки 2 вдавлены в щели посредством частей 30 крепления зажимов и прочно зафиксированы в щелях. Согнутые части 30 крепления прикладывают усилие 50 крепления к стенкам щелей в направлении, параллельном верхней поверхности основы, внутрь основы. Кромки 301 зажимов 3 могут действовать как шипы, дополнительно фиксирующие сетку в щелях и улучшающие прочность электрического контакта зажимов 3 с сеткой 2.

На фиг.3b показан альтернативный вариант согнутой части 30 крепления зажима 3, вставленной в продольную щель 4. Щель имеет выпуклые стенки 6, которые нажимают на зажим в самой узкой согнутой области 7 вставленной части 30 крепления. В этом варианте самая узкая согнутая часть 7 расположена примерно посередине высоты основы 1. Таким образом согнутая часть 8 (большего размера), вставленная максимально глубоко в щель 4, дополнительно защищена от выхода из щели.

На фиг.4а-4d показаны варианты зажимов 3, которые фиксируют сетку на верхней поверхности и на нижней поверхности основы 1. Верхняя и нижняя кромки 9, 10 крепления вжимаются в верхнюю и нижнюю поверхность основы 1. Сетка 2 расположена между по меньшей мере верхней кромкой 9 крепления и верхней поверхностью основы. Верхняя кромка 9 немного отклонена в заднем направлении таким образом, чтобы обеспечить более стабильную конструкцию, когда сетка 2 натянута противоположно этому заднему направлению.

Зажимы 3 содержат боковые части 32, расположенные с боковой или окружной стороны основы 1. Боковые части 32 зажимов обеспечивают возможность дополнительной поддержки фиксации и контакта сетки 2 благодаря контакту с боковой стороной основы 1.

На фиг.4а и 4b сетка 2 обведена вокруг окружной поверхности основы 1 и зафиксирована с обеих сторон основы. Кромки 9, 10 крепления зажима 3 на фиг.4b вытянуты не по всей длине зажима в продольном направлении. Эти кромки образованы вырезами в листовой заготовке зажима и загнуты в сторону соответственно верхней и нижней поверхностей основы 1.

Боковые стенки зажима 3 на фиг.4с плавно изогнуты, меняя таким образом упругость зажима. Верхняя и нижняя поверхности основы 1 имеют продольные выемки 12, 13 в виде бороздок для размещения кромок 9, 10 зажима, а также сетки 2 (верхняя выемка 9 существует только в этом варианте).

Боковая сторона 32 зажима 3 на фиг.4d плотно контактирует с боковой стороной основы, а также с частью нижней поверхности основы 1. На нижней поверхности основы зажим образует треугольник 33 на виде сбоку. Длина треугольника 33 может быть адаптирована и изменена для изменения усилия крепления зажима 3.

Как показано на фиг.4а-4d, оснащенный зажимами узел-нагреватель может быть собран путем размещения сетки 2 поверх основы 1и сгибания зажимов одновременно с монтажом нагревателя. При сгибании зажимов прикладывают растягивающее усилие к сетке.

На фиг.5а и 5b показаны виды сверху узлов-нагревателей с зажимами, имеющими продольные части крепления, например, такие, как показано в вариантах на фиг.4а-4d и фиг.6а-6с. Зажимы 3 на фиг.5 имеют по существу прямоугольную форму на виде сверху и снизу. Эти зажимы просты в изготовлении; например, их получают путем сгибания прямоугольной заготовки из листового материала или проволоки. Как показано на фиг.5b, зажимы имеют форму, адаптированную к форме основы. Таким образом, круглая основа оснащена зажимами, соответствующими круглой форме окружной поверхности основы. Такой узел-нагреватель является очень компактным и занимает мало места также и в боковых направлениях.

На фиг.6а-6с показаны узел-нагреватель и зажимные скобы; эти зажимные скобы имеют возможность скольжения по подготовленной структуре из основы 1 и сетки 2. Основа имеет продольные выемки 12, 13 в виде бороздок в верхней поверхности и в нижней поверхности. Выемки 12, 13 расположены параллельно друг другу и отверстию 100 в поверхности и вытянуты через всю поверхность основы 1. Выемки 12, 13 облегчают боковое скольжение зажимных скоб 3 по структуре из сетки и основы. Предпочтительно, сетку 2 сильно натягивают перед перемещением зажимных скоб 3 скольжением в основу 1. Для предотвращения разрыва сетки или застревания в сетке при скольжении по ней, кромки 15 зажимной скобы скруглены. Это можно видеть на фиг.6с, на котором показан предварительно изготовленная зажимная скоба 3 в качестве средства крепления.

На фиг.7а, 7b, 8 и 10 показаны средства 3 крепления в виде двух скоб и соответствующих выемок 12 в основе 1. Сетку (не показана) размещают поверх по меньшей мере части отверстия 100 основы. Скобы вставляют вертикально в выемки 12, 120, 122 основы. В закрепленном положении мостики скоб оказываются размещенными в продольных выемках 12, выполненных в верхней поверхности основы 1. Эти ножки имеют длину больше, чем толщина основы 1. Выступающие концы ножек сгибают и утапливают в соответствующих выемках 19 в нижней поверхности основы. Благодаря загибу ножек вокруг основы, обеспечена надежная фиксация и контакт с сеткой 2 посредством скоб. На фиг.7а и 8 четыре ножки двух скоб вставлены в четыре выемки 121, расположенные в окружной поверхности дискообразной основы. На фиг.7а мостики скоб имеют штампованный выступ 17 крышеобразной формы. Такая форма может точно соответствовать форме соединителей батареи. Продольные выемки 12 в основе также имеют на дне соответствующий крышеобразный выступ 18, как можно видеть на поперечном сечении, подробно показанном на фиг.7b.

На фиг.8 мостики скоб имеют гравированное v-образное углубление 20, которое соответствует гравированному v-образному углублению 21 выемок 12.

Растягивание сетки обусловлено соответствующими выступами и углублениями 17,18; 20, 21 в скобах и выемках 12.

На фиг.9 показаны в собранном состоянии два узла-нагревателя, показанных на фиг.7а и 8. При этом узел-нагреватель, показанный на фиг.7а, соответствует варианту, показанному на фиг.9 внизу, а узел-нагреватель, показанный на рис. 8, соответствует варианту, показанному на фиг.9 вверху.

На фиг.10 показан еще один вариант узла-нагревателя со скобами в качестве средств 3 крепления. Основа имеет две продольных выемки 12 для размещения мостиковых частей скоб. Основа имеет также по одному отверстию 122 на каждом конце продольных выемок 12. Ножки скоб вдавливают в отверстия 122 и фиксируют сетку (не показана) в состоянии контакта между выемками 12 и скобами. Скобы 3 могут быть прикреплены к основе 1 за счет соответствия по форме между ножками скоб и отверстиями 122. Тем не менее, нижняя поверхность основы может также иметь выемки для размещения концов ножек, загнутых к нижней поверхности основы.

На фиг.11а-11d показаны способы получения объединенной нити, имеющей первую и вторые части. На фиг.11а первая часть показана в виде сетки 1101, а вторые части показаны в виде сетки 1103 более высокой плотности. Например, первая часть может содержать сетку меньшей плотности, чем вторые части, однако, как первая, так и вторые части могут быть выполнены из одного и того же материала, такого как нержавеющая сталь. На фиг.11b первая часть показана в виде сетки 1101, содержащей первый материал, а вторые части 1105 показаны как концевые части, выполненные из второго материла, отличного от первого материала. При этом второй материал является более пластичным, чем первый материал. В качестве примера, первая часть 1101 может быть выполнена из нержавеющей стали, а вторая часть 1105 может быть медной. На фиг.11с показано приложение к вторым частям 1108 усилия посредством прижимных элементов 1107 таким образом, чтобы вторые части 1108 деформировались и превратились в материал 1109 типа фольги, как показано на фиг.11d.

После получения готовой объединенной нити, включающей первую часть 1101 и вторые части 1103, 1105 и 1109, эта объединенная нить может быть закреплена на основе с использованием одного из вышеописанных способов путем размещения вторых частей 1103, 1105, 1109 таким образом, чтобы зажимы 3 были электрически соединены с этими вторыми частями.

Настоящее изобретение было подробно описано на основе вариантов, проиллюстрированных графическими материалами. Тем не менее, могут быть рассмотрены и другие варианты механизмов крепления и соответствующих им средств крепления и форм основы. Например, сетка может быть закреплена на основе с помощью винтов. Эти винты являются электропроводными и служат в качестве электрических контактов для ниточной структуры и в качестве соединителей для батареи. Может также использоваться фиксирующее сцепление между средствами крепления и основой в виде, например, нажимных кнопок или защелок. При этом средства крепления образуют одну часть защелки, а основа оснащена соответствующей другой частью защелки.

Похожие патенты RU2765205C2

название год авторы номер документа
ПРОНИЦАЕМЫЙ ДЛЯ ТЕКУЧЕЙ СРЕДЫ УЗЕЛ-НАГРЕВАТЕЛЬ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ И СПОСОБ СБОРКИ ПРОНИЦАЕМОГО ДЛЯ ТЕКУЧЕЙ СРЕДЫ НАГРЕВАТЕЛЯ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2014
  • Батиста Руй
  • Видмер Жан-Марк
  • Поульсен Йенс Ульрик
RU2664827C2
ПРОНИЦАЕМЫЙ ДЛЯ ТЕКУЧЕЙ СРЕДЫ УЗЕЛ-НАГРЕВАТЕЛЬ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ И СПОСОБ СБОРКИ ПРОНИЦАЕМОГО ДЛЯ ТЕКУЧЕЙ СРЕДЫ НАГРЕВАТЕЛЯ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2021
  • Батиста, Руй
  • Видмер, Жан-Марк
  • Поульсен, Йенс Ульрик
RU2818397C2
ПРОНИЦАЕМЫЙ ДЛЯ ТЕКУЧЕЙ СРЕДЫ НАГРЕВАТЕЛЬНЫЙ УЗЕЛ И КАРТОМАЙЗЕРНЫЙ КАРТРИДЖ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2017
  • Фурса Олег
RU2747837C2
ПРОНИЦАЕМЫЙ ДЛЯ ТЕКУЧЕЙ СРЕДЫ НАГРЕВАТЕЛЬ В СБОРЕ ДЛЯ СИСТЕМ, ГЕНЕРИРУЮЩИХ АЭРОЗОЛЬ 2017
  • Миронов Олег
  • Зиновик Ихар Николаевич
RU2729877C2
НАГРЕВАТЕЛЬНЫЙ УЗЕЛ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2014
  • Зиновик Ихар
  • Миронов Олег
  • Фернандо Китан Даснавис
RU2681866C2
КАРТРИДЖ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2014
  • Мальга Александр
  • Брифкани Нори Мояд
  • Батиста Руй
  • Миронов Олег
RU2666670C2
НАГРЕВАТЕЛЬ В СБОРЕ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ, СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО НАГРЕВАТЕЛЯ, КАРТРИДЖ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ И ГЕНЕРИРУЮЩАЯ АЭРОЗОЛЬ СИСТЕМА 2019
  • Фредерик, Гийом
  • Сильвестрини, Патрик Чарльз
  • Видмер, Жан-Марк
  • Зиновик, Ихар Николаевич
RU2792199C2
КАРТРИДЖ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2014
  • Мальга Александр
  • Брифкани Нори Мояд
  • Батиста Руй
  • Миронов Олег
RU2688868C2
ВЫПОЛНЕННЫЙ ЛИТЬЕМ ПОД ДАВЛЕНИЕМ ДЕРЖАТЕЛЬ ДЛЯ ГЕНЕРИРУЮЩЕГО АЭРОЗОЛЬ ЭЛЕМЕНТА В ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЕ 2018
  • Сильвестрини, Патрик Чарльз
  • Фредерик, Гийом
  • Зиновик, Ихар Николаевич
RU2754483C2
ГЕНЕРИРУЮЩАЯ АЭРОЗОЛЬ СИСТЕМА (ВАРИАНТЫ) И КАРТРИДЖ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ 2018
  • Сильвестрини, Патрик Чарльз
  • Зиновик, Ихар Николаевич
  • Брифкани, Нори Мояд
  • Фредерик, Гийом
RU2781999C2

Иллюстрации к изобретению RU 2 765 205 C2

Реферат патента 2022 года ПРОНИЦАЕМЫЙ ДЛЯ ТЕКУЧЕЙ СРЕДЫ УЗЕЛ-НАГРЕВАТЕЛЬ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ И СПОСОБ СБОРКИ ПРОНИЦАЕМОГО ДЛЯ ТЕКУЧЕЙ СРЕДЫ НАГРЕВАТЕЛЯ ДЛЯ ГЕНЕРИРУЮЩЕЙ АЭРОЗОЛЬ СИСТЕМЫ

Изобретение относится к области электротехники. Технический результат заключается в упрощении конструкции проницаемого для текучей среды нагревателя. Достигается тем, что проницаемый для текучей среды узел-нагреватель для генерирующих аэрозоль систем содержит основу, включающую отверстие через эту основу, электропроводную, по существу плоскую ниточную структуру, расположенную поверх упомянутого отверстия, и механические средства фиксации, механически фиксирующие ниточную структуру на основе. При этом ниточная структура включает первую часть и вторые части, образующие объединенную нить. Первая часть предусмотрена межу вторыми частями, при этом ниточная структура содержит множество нитей, образующих сетку. Вторые части содержат сетку с большей плотностью сетки, чем плотность сетки первой части. 2 н. и 13 з.п. ф-лы, 22 ил.

Формула изобретения RU 2 765 205 C2

1. Проницаемый для текучей среды узел-нагреватель для генерирующих аэрозоль систем, содержащий:

основу, включающую отверстие через эту основу,

электропроводную, по существу плоскую ниточную структуру, расположенную поверх упомянутого отверстия, и

механические средства фиксации, механически фиксирующие ниточную структуру на упомянутой основе, при этом ниточная структура включает первую часть и вторые части, образующие объединенную нить, при этом первая часть предусмотрена межу вторыми частями,

при этом ниточная структура содержит множество нитей, образующих сетку,

и при этом вторые части содержат сетку с большей плотностью сетки, чем плотность сетки первой части.

2. Проницаемый для текучей среды узел-нагреватель по п.1, в котором первая часть и вторые части образованы из одного и того же материала.

3. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором электрическое сопротивление ниточной структуры составляет от 0,3 до 4 Ом.

4. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором ниточная структура имеет толщину от 0,5 микрона до 500 микрон.

5. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, содержащий промежутки между нитями ниточной структуры, имеющие ширину от 25 до 75 микрон.

6. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором открытая площадь сетки составляет от 25 до 60 процентов.

7. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором сетка может быть с переплетением или без переплетения.

8. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором механические средства фиксации являются электропроводными и служат в качестве электрических контактов для обеспечения тока нагрева через ниточную структуру.

9. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором механические средства фиксации представляют собой средства крепления.

10. Проницаемый для текучей среды узел-нагреватель по п.9, в котором средства крепления, механически фиксирующие ниточную структуру на основе, обеспечивают смыкание с основой с согласованием по форме или смыкание с основой с прессовой посадкой.

11. Проницаемый для текучей среды узел-нагреватель по любому из пп.9, 10, в котором средства крепления простираются поверх части боковой стороны основы и содержат упругие ножки, прижимающие ниточную структуру к верхней поверхности основы, при этом ниточная структура и основа расположены между упругими ножками.

12. Проницаемый для текучей среды узел-нагреватель по любому из пп.9-11, в котором основа содержит выемки для размещения ниточной структуры и средств крепления в этих выемках.

13. Проницаемый для текучей среды узел-нагреватель по любому из пп.9-12, в котором выемки представляют собой одну или комбинацию из продольных выемок, простирающихся через по меньшей мере часть верхней поверхности основы, отдельных сквозных отверстий в основе или выемок в окружной поверхности основы.

14. Проницаемый для текучей среды узел-нагреватель по любому из предыдущих пунктов, в котором основа представляет собой электроизоляционный, по существу плоский, предпочтительно дискообразный элемент.

15. Генерирующая аэрозоль система, содержащая:

контейнерную часть, содержащую корпус для хранения жидкого образующего аэрозоль субстрата, имеющий открытый конец,

проницаемый для текучей среды узел-нагреватель по любому из пп.1-14, расположенный рядом с упомянутым корпусом таким образом, что ниточная структура проницаемого для текучей среды узла-нагревателя расположена поверх открытого конца корпуса, и

соединитель источника питания для электрического подключения механических средств фиксации проницаемого для текучей среды узла-нагревателя к источнику питания.

Документы, цитированные в отчете о поиске Патент 2022 года RU2765205C2

US 2013333700 A1, 19.12.2013
Многоканальное устройство для прерывания программ 1976
  • Михайлов Сергей Федорович
  • Тужилин Виталий Иванович
  • Школин Владимир Петрович
SU640297A1
НАГРЕВАТЕЛЬ ДЛЯ ИСПОЛЬЗОВАНИЯ В КУРИТЕЛЬНОМ ИЗДЕЛИИ С ИСТОЧНИКОМ ЭЛЕКТРОЭНЕРГИИ ДЛЯ НАГРЕВА ТАБАЧНОЙ АРОМАТНОЙ СРЕДЫ, НАГРЕВАТЕЛЬ ДЛЯ ИСПОЛЬЗОВАНИЯ В КУРИТЕЛЬНОМ ИЗДЕЛИИ С ИСТОЧНИКОМ ЭЛЕКТРОЭНЕРГИИ ДЛЯ НАГРЕВА ЦИЛИНДРИЧЕСКОЙ СИГАРЕТЫ И СПОСОБ ИЗГОТОВЛЕНИЯ НАГРЕВАТЕЛЯ 1995
  • Махаммад Р.Хаялигол
  • Грир С.Фляйшхауэр
  • Ситхарама С.Диви
  • Чарльз Т.Хиггинс
  • Патрик Х.Хейз
  • Герберт Герман
  • Роберт В.Гэнсерт
  • Альфред Л.Коллинз
  • Билли Дж.Кин
  • Бернард С.Лэрой
  • А.Клинтон Лилли
RU2132629C1
US 2013319407 A1, 05.12.2013.

RU 2 765 205 C2

Авторы

Батиста Руй

Видмер Жан-Марк

Поульсен Йенс Ульрик

Даты

2022-01-26Публикация

2014-12-15Подача