УСТРОЙСТВО И СПОСОБ ОБРАБОТКИ СИГНАЛА И ПРОГРАММА Российский патент 2022 года по МПК G10L19/02 

Описание патента на изобретение RU2765345C2

Область техники, к которой относится изобретение

Настоящее изобретение относится к устройству и способу обработки сигнала, а также к программе. Конкретнее, вариант осуществления относится к устройству и способу обработки сигнала, а также к программе, выполненным так, чтобы получать звуковой сигнал более высокого качества звучания в случае декодирования закодированного аудиосигнала.

Уровень техники

Традиционно в качестве методов кодирования аудиосигнала известны НЕ-ААС (Высокоэффективное кодирование аудиосигнала MPEG) (Группа экспертов по кинематографии) 4 (международный стандарт ISO/IEC 14496-3)) и т.п. При таких методах кодирования используется технология кодирования с высокочастотными характеристиками, называемая SBR (Копирование спектральных полос (SBR) (например, см. PTL 1).

При SBR, когда кодируется аудиосигнал, кодированные низкочастотные составляющие аудиосигнала (обозначенные здесь и далее как низкочастотный сигнал, то есть сигнал низкочастотного диапазона) выводятся вместе с информацией SBR для генерирования высокочастотных составляющих аудиосигнала (обозначенных здесь как высокочастотный сигнал, то есть сигнал высокочастотного диапазона). В декодирующем устройстве кодированный низкочастотный сигнал декодируется, между тем как в дополнение к этому полученный кодированием низкочастотный сигнал и информация SBR используются для генерирования высокочастотного сигнала, и получается аудиосигнал, состоящий из низкочастотного сигнала и высокочастотного сигнала.

Конкретнее, предположим, например, что низкочастотный сигнал SL1, показанный на Фиг. 1, получается декодированием. Здесь, на Фиг. 1, горизонтальная ось указывает частоту, а вертикальная ось указывает энергию соответственных частот аудиосигнала. Кроме того, вертикальные пунктирные линии на чертеже представляют границы полос масштабных коэффициентов. Полосы масштабных коэффициентов представляют собой полосы, которые собирают вместе множество поддиапазонов заданной полосы пропускания, т.е. разрешение анализирующего фильтра в QMF (квадратурном зеркальном фильтре (КвЗФ).

На Фиг. 1 полоса, состоящая из семи следующих одна за другой полос масштабных коэффициентов с правой стороны чертежа низкочастотного сигнала SL1, взята в качестве высокого диапазона. Энергии Е11-Е17 высокочастотных полос масштабных коэффициентов получаются для каждой из полос масштабных коэффициентов на высокочастотной стороне декодированием информации SBR.

Помимо этого, низкочастотный сигнал SL1 и энергии высокочастотных полос масштабных коэффициентов используются для генерирования высокочастотного сигнала для каждой полосы масштабных коэффициентов. Например, в случае, когда генерируется высокочастотный сигнал для полосы Bobj масштабных коэффициентов, составляющие полосы Borg масштабных коэффициентов из низкочастотного сигнала SL1 сдвигаются по частоте в диапазон полосы Bobj масштабных коэффициентов. Сигнал, полученный этим частотным сдвигом, регулируется по амплитуде и принимается в качестве высокочастотного сигнала. В это время регулировка усиления проводится так, чтобы средняя энергия сигнала, полученного этим частотным сдвигом, стала такой же величины, что и энергия Е13 высокочастотной полосы масштабных коэффициентов в полосе Bobj масштабных коэффициентов.

Согласно такой обработке показанный на Фиг. 2 высокочастотный сигнал SH1 генерируется как составляющая полосы Bobj масштабных коэффициентов. Здесь, на Фиг. 2 одинаковые ссылочные позиции назначены элементам, соответствующим случаю по Фиг. 1, и их подробное описание опущено или сокращено.

Следовательно, на декодирующей аудиосигнал стороне низкочастотный сигнал и информация SBR используются для генерирования высокочастотных составляющих, не включённых в кодированный и декодированный низкочастотный сигнал, и расширяют полосу, что даёт возможность воспроизводить звук с высоким качеством звучания.

Список источников

Патентная литература

Выложенная заявка на патент Японии № 2001-521648 (перевод заявки РСТ).

Раскрытие изобретения

Раскрывается воплощаемый компьютером способ обработки аудиосигнала. Этот способ может включать в себя приём кодированного сигнала низкочастотного диапазона. Способ может дополнительно включать в себя декодирование указанного сигнала для выработки декодированного сигнала с энергетическим спектром, форма которого включает в себя энергетический провал. Помимо того, данный способ может включать в себя выполнение фильтрации декодированного сигнала, причём фильтрация разделяет декодированный сигнал на полосы сигналов низкочастотного диапазона. Способ может также включать в себя выполнение процесса сглаживания декодированного сигнала, причём указанный процесс сглаживания сглаживает энергетический провал декодированного сигнала. Способ может дополнительно включать в себя выполнение сдвига по частоте сглаженного декодированного сигнала, причём указанный сдвиг по частоте генерирует полосовые сигналы высокочастотного диапазона из полосовых сигналов низкочастотного диапазона. Помимо того, способ может включать в себя объединение сигналов полос низкочастотного диапазона и сигналов полос высокочастотного диапазона для генерирования выходного сигнала. Способ может дополнительно включать в себя выведение выходного сигнала.

Кроме того, описано устройство обработки сигнала. Указанное устройство может включать в себя схему декодирования низкочастотного диапазона, выполненную с возможностью приема кодированного сигнала низкочастотного диапазона, соответствующего аудиосигналу, и декодирования указанного кодированного сигнала для выработки декодированного сигнала с энергетическим спектром, форма которого включает в себя энергетический провал. Помимо того, устройство может включать в себя процессор фильтрования, выполненный с возможностью фильтрации декодированного сигнала, причём указанная фильтрация разделяет декодированный сигнал на сигналы полос низкочастотного диапазона. Устройство может также включать в себя схему генерирования высокочастотного диапазона, выполненную с возможностью выполнения процесса сглаживания декодированного сигнала, причём указанный процесс сглаживания сглаживает энергетический провал декодированного сигнала, и выполнения сдвига по частоте сглаженного декодированного сигнала, причём указанный сдвиг по частоте генерирует сигналы полос высокочастотного диапазона из сигналов полос низкочастотного диапазона. Помимо того, устройство может включать в себя объединяющую схему, выполненную с возможностью объединения сигналов полос низкочастотного диапазона и сигналов полос высокочастотного диапазона для генерирования выходного сигнала и вывода указанного выходного сигнала.

Кроме того, описан материальный машиночитаемый носитель данных, содержащий команды, которые при выполнении процессором вызывают выполнение способа обработки аудиосигнала. Этот способ может включать в себя приём кодированного сигнала низкочастотного диапазона. Способ может дополнительно включать в себя декодирование указанного сигнала для выработки декодированного сигнала с энергетическим спектром, форма которого включает в себя энергетический провал. Помимо того, данный способ может включать в себя фильтрацию декодированного сигнала, причём указанная фильтрация разделяет декодированный сигнал на полосы сигналов низкочастотного диапазона. Способ может также включать в себя выполнение процесса сглаживания декодированного сигнала, причём указанный процесс сглаживания сглаживает энергетический провал декодированного сигнала. Способ может дополнительно включать в себя выполнение сдвига по частоте сглаженного декодированного сигнала, причём указанный сдвиг по частоте генерирует полосы сигналов высокочастотного диапазона из полос сигналов низкочастотного диапазона. Помимо того, способ может включать в себя объединение сигналов полос низкочастотного диапазона и сигналов полос высокочастотного диапазона для генерирования выходного сигнала. Способ может дополнительно включать в себя вывод выходного сигнала.

Техническая задача

Однако в случаях, когда имеется провал в низкочастотном сигнале SL1, используемом для генерирования высокочастотного сигнала, то есть когда имеется сигнал низкочастотного диапазона с энергетическим спектром, форма которого включает в себя энергетический провал, используемый для генерирования сигнала высокочастотного диапазона, наподобие полосы Borg масштабных коэффициентов Фиг. 2, высока вероятность, что форма полученного высокочастотного сигнала SH1 примет форму, в значительной степени отличную от частотной формы исходного сигнала, что станет причиной ухудшения слухового восприятия. Здесь, состояние, в котором имеется провал в низкочастотном сигнале, относится к состоянию, в котором энергия заданной полосы заметно ниже по сравнению с энергиями соседних полос, участок низкочастотного спектра мощности (энергетическое колебание каждой частоты), выдающийся вниз на чертеже. Иными словами, это относится к состоянию, в котором энергия части составляющих полосы имеет провал, то есть энергетический спектр имеет форму, включающую в себя энергетический провал.

В примере на Фиг. 2, поскольку имеется провал в низкочастотном сигнале, т.е. в сигнале низкочастотного диапазона SL1, используемом для генерирования высокочастотного сигнала, т.е. сигнала высокочастотного диапазона, провал появляется также в высокочастотном сигнале SH1. Если существует такой провал в низкочастотном сигнале, используемом для генерирования высокочастотного сигнала, высокочастотные составляющие больше нельзя воспроизводить точно, и может появиться ухудшение слуховых характеристик при восприятии звукового сигнала, полученного при декодировании.

Кроме того, при SBR может проводиться обработка, именуемая ограничением усиления и интерполяцией. В некоторых случаях такая обработка может быть причиной появления провалов в высокочастотных составляющих.

Здесь, ограничение усиления представляет собой обработку, которая подавляет пиковые значения усиления в ограниченной полосе, состоящей из множества поддиапазонов, до среднего значения усиления в этой ограниченной полосе.

Например, предположим, что низкочастотный сигнал SL2, показанный на Фиг. 3, получается декодированием низкочастотного сигнала. Здесь, на Фиг. 3 горизонтальная ось указывает частоту, а вертикальная ось указывает энергию соответствующих частот аудиосигнала. Кроме того, вертикальные пунктирные линии на этом чертеже представляют границы полос масштабных коэффициентов.

На Фиг. 3 в качестве высокого диапазона принят диапазон, состоящий из семи следующих одна за другой полос масштабных коэффициентов в правой части изображения низкочастотного сигнала SL2. За счёт декодирования информации SBR получаются энергии Е21-Е27 высокочастотных полос масштабных коэффициентов.

Кроме того, в качестве ограниченной полосы принята полоса, состоящая из трёх полос Bobj1-Bobj3 масштабных коэффициентов. Далее, предположим, что используются соответственные компоненты полос Bobj1-Bobj3 масштабных коэффициентов низкочастотного сигнала SL2, и генерируются соответственные высокочастотные сигналы для полос Bobj1-Bobj3 масштабных коэффициентов на стороне высокого диапазона.

Следовательно, при генерировании высокочастотного сигнала SH2 в полосе Bobj2 масштабных коэффициентов регулировка усиления выполняется в основном согласно разности G2 энергий между средней энергией полосы Borg2 масштабных коэффициентов низкочастотного сигнала SL2 и энергией Е22 высокочастотной полосы масштабных коэффициентов. Иными словами, регулировка усиления проводится путём сдвига по частоте составляющих полосы Borg2 масштабных коэффициентов низкочастотного сигнала SL2 и умножения полученного в результате сигнала на разность G2 энергий. Это произведение принимается в качестве высокочастотного сигнала SH2.

Однако при ограничении усиления, если разность G2 энергий больше, чем среднее значение G разностей G1-G3 энергий полос Bobj1-Bobj3 масштабных коэффициентов в ограниченной полосе, разность G2 энергий, на которую умножается сдвинутый по частоте сигнал, будет приниматься в качестве среднего значения G. Иными словами, усиление высокочастотного сигнала для полосы Bobj2 масштабных коэффициентов будет подавляться.

В примере на Фиг. 3 энергия полосы Borg2 масштабных коэффициентов в низкочастотном сигнале SL2 стала меньше по сравнению с энергиями соседних полос Borg1 и Borg3 масштабных коэффициентов. Иными словами, произошел провал в части полосы Boeg2 масштабных коэффициентов.

В противоположность этому, энергия Е22 высокочастотной полосы масштабных коэффициентов в полосе Bobj2 масштабных коэффициентов, т.е. назначение приложения низкочастотных составляющих больше, чем энергии полос масштабных коэффициентов в полосах Bobj1 и Bobj3 масштабных коэффициентов.

По этой причине разность G2 энергий полосы Bobj2 масштабных коэффициентов становится больше, чем среднее значение G разности энергий в ограниченной полосе, и усиление высокочастотного сигнала для полосы Bobj2 масштабных коэффициентов подавляется ограничением усиления.

Следовательно, в полосе Bobj2 масштабных коэффициентов энергия высокочастотного сигнала SH2 становится гораздо ниже, чем энергия Е22 высокочастотной полосы масштабных коэффициентов, и частотная огибающая генерируемого высокочастотного сигнала приобретает форму, которая сильно отличается от частотной огибающей исходного сигнала. Таким образом, в конечном счёте происходит ухудшение звукового восприятия звукового сигнала, полученного при декодировании.

Кроме того, интерполяция представляет собой метод генерирования высокочастотного сигнала, который осуществляет сдвиг по частоте и регулировку усиления в каждом поддиапазоне, а не в каждой полосе масштабных коэффициентов.

Например, как показано на Фиг. 4, предположим, что используются соответственные поддиапазоны Borg1-Borg3 низкочастотного сигнала SL3, генерируются соответственные высокочастотные сигналы в поддиапазонах Bobj1-Bobj3 на высокочастотной стороне, а в качестве ограниченной полосы принимается полоса, состоящая из поддиапазонов Bobj1-Bobj3.

Здесь, на Фиг. 4 горизонтальная ось указывает частоту, а вертикальная ось указывает энергию соответственных частот аудиосигнала. Кроме того, за счёт декодирования информации SBR для каждой полосы масштабных коэффициентов получаются энергии Е31-Е37 высокочастотных полос масштабных коэффициентов.

В примере по Фиг. 4 энергия поддиапазона Borg2 в низкочастотном сигнале SL3 стала меньше по сравнению с энергиями смежных поддиапазонов Borg1 и Borg3, и в части произошел провал поддиапазона Borg2. По этой причине и аналогично случаю Фиг. 3, разность энергий между энергией поддиапазона Borg2 низкочастотного сигнала SL3 и энергией Е33 высокочастотной полосы масштабных коэффициентов стала выше, чем среднее значение разности энергий в ограниченной полосе. Таким образом, усиление высокочастотного сигнала SH3 в поддиапазоне Bobj2 подавляется ограничением усиления.

В результате, в поддиапазоне Bobj2 энергия высокочастотного сигнала SH3 становится гораздо ниже, чем энергия Е33 высокочастотной полосы масштабных коэффициентов, и частотная огибающая генерируемого высокочастотного сигнала может принять форму, которая сильно отличается от частотной огибающей исходного сигнала. Таким образом, аналогично случаю по Фиг. 3, в звуковом сигнале, полученном путём декодирования, происходит ухудшение слухового восприятия.

Как и в вышеприведённых примерах, с SBR имеются случаи, когда звуковой сигнал высокого качества звучания не получается на стороне, декодирующей аудиосигнал, из-за формы (частотной огибающей) спектра мощности низкочастотного сигнала, используемого для генерирования высокочастотного сигнала.

Полезные эффекты изобретения

Согласно объекту варианта осуществления в случае декодирования аудиосигнала можно получить звуковой сигнал с более высоким качеством звучания.

Краткое описание чертежей

Фиг. 1 является схемой, поясняющей традиционное SBR.

Фиг. 2 является схемой, поясняющей традиционное SBR.

Фиг. 3 является схемой, поясняющей традиционное ограничение усиления.

Фиг. 4 является схемой, поясняющей традиционную интерполяцию.

Фиг. 5 является схемой, поясняющей SBR, к которому применён один вариант осуществления.

Фиг. 6 является схемой, иллюстрирующей примерную конфигурацию варианта осуществления кодера, с применением одного варианта осуществления.

Фиг. 7 является блок-схемой алгоритма, поясняющей процесс кодирования.

Фиг. 8 является схемой, иллюстрирующей примерную конфигурацию варианта осуществления декодера, с применением одного варианта осуществления.

Фиг. 9 является блок-схемой алгоритма, поясняющей процесс декодирования.

Фиг. 10 является блок-схемой алгоритма, поясняющей процесс кодирования.

Фиг. 11 является блок-схемой алгоритма, поясняющей процесс декодирования.

Фиг. 12 является блок-схемой алгоритма, поясняющей процесс кодирования.

Фиг. 13 является блок-схемой алгоритма, поясняющей процесс декодирования.

Фиг. 14 является блок-схемой, иллюстрирующей примерную конфигурацию компьютера.

Осуществление изобретения

Далее варианты осуществления будут описаны со ссылкой на чертежи.

Обзор настоящего изобретения

Сначала, со ссылкой на Фиг. 5 будет описано расширение полосы аудиосигнала посредством SBR, к которому применён один вариант осуществления. Здесь, на Фиг. 5 горизонтальная ось указывает частоту, а вертикальная ось указывает энергию соответственных частот аудиосигнала. Кроме того, вертикальные пунктирные линии на чертеже представляют границы полос масштабных коэффициентов.

Например, предположим, что на стороне декодирования аудиосигнала из данных, принятых от кодирующей стороны, получаются низкочастотный сигнал SL11 и энергии Eobj1-Eobj7 высокочастотных полос масштабных коэффициентов соответственных полос Bobj1-Bobj7 масштабных коэффициентов. Предположим также, что используются низкочастотный сигнал SL11 и энергии Eobj1-Eobj7 высокочастотных полос масштабных коэффициентов, и генерируются высокочастотные сигналы соответственных полос Bobj1-Bobj7 масштабных коэффициентов.

Теперь считаем, что низкочастотный сигнал SL11 и составляющая полосы Borg1 масштабных коэффициентов используются для генерирования высокочастотного сигнала полосы Bobj3 масштабных коэффициентов на высокочастотной стороне.

В примере на Фиг. 5 спектр мощности низкочастотного сигнала SL11 имеет сильный провал на чертеже в части полосы Borg1 масштабных коэффициентов. Иными словами, энергия стала малой по сравнению с прочими полосами. По этой причине, если высокочастотный сигнал в полосе Bobj3 масштабных коэффициентов генерируется традиционным SBR, в полученном высокочастотном сигнале также появится провал, и в звуковом сигнале появится ухудшение звучания.

Соответственно, в одном варианте осуществления сначала проводится выравнивание (т.е. сглаживание) над составляющей полосы Borg1 масштабных коэффициентов низкочастотного сигнала SL11. Таким образом, получается низкочастотный сигнал Н11 выравниваемой полосы Borg1 масштабных коэффициентов. Спектр мощности данного низкочастотного сигнала Н11 гладко связывается с частями полос, смежными с полосой Borg1 масштабных коэффициентов в спектре мощности низкочастотного сигнала SL11. Иными словами, низкочастотный сигнал SL11 после выравнивания, т.е. сглаживания становится сигналом, в котором не появляется провал в полосе Borg1 масштабных коэффициентов.

При этом, если проводится выравнивание низкочастотного сигнала SL11, низкочастотный сигнал Н11, полученный выравниванием, сдвинут по частоте в полосу Bobj3 масштабных коэффициентов. Сигнал, полученный сдвигом по частоте, регулируется усилением и принимается в качестве высокочастотного сигнала Н12.

В этот момент среднее значение энергий в каждом поддиапазоне низкочастотного сигнала Н11 вычисляется как средняя энергия Eorg1 полосы Borg1 масштабных коэффициентов. Затем регулировка усиления сдвинутого по частоте низкочастотного сигнала Н11 проводится согласно отношению средней энергии Eorg1 и энергии Eobj3 высокочастотной полосы масштабных коэффициентов. Конкретнее, регулировка усиления проводится так, что среднее значение всех энергий в соответственных поддиапазонах в сдвинутом по частоте низкочастотном сигнале Н11 становится почти такой же величины, как энергия Eobj3 полосы масштабных коэффициентов.

На Фиг. 5, поскольку используется низкочастотный сигнал Н11 без провала и генерируется высокочастотный сигнал Н12 без провала, энергии соответственных поддиапазонов в высокочастотном сигнале Н12 стали приблизительно такой же величины, как и энергия Eobj3 высокочастотной полосы масштабных коэффициентов. Следовательно, получается высокочастотный сигнал почти такой же, как высокочастотный сигнал в исходном сигнале.

Таким образом, если выравниваемый низкочастотный сигнал используется для генерирования высокочастотного сигнала, высокочастотные составляющие аудиосигнала могут генерироваться с большей точностью, и обычное ухудшение качества звучания аудиосигнала, получающееся из-за провалов в спектре мощности низкочастотного сигнала, может быть исправлено. Иными словами, становится возможным получить звуковой сигнал с более высоким качеством звучания.

Кроме того, поскольку провалы в спектре мощности могут быть удалены, при выравнивании низкочастотного сигнала, ухудшение качества звучания в аудиосигнале можно предотвратить при использовании выравниваемого низкочастотного сигнала для генерирования высокочастотного сигнала, даже в случаях, когда проводится ограничение усиления и интерполяция.

Это может выполняться так, что выравнивание низкочастотного сигнала проводится над всеми составляющими полос низкочастотной стороны, используемой для генерирования высокочастотных сигналов, либо это может выполняться так, что выравнивание низкочастотного сигнала проводится только над составляющей полосы, в которой происходит провал, среди составляющих полос низкочастотной стороны. Кроме того, в случае, когда выравнивание проводится только над составляющей полосы, в которой происходит провал, полоса, подвергнутая выравниванию, может составлять один поддиапазон, если поддиапазоны составляют полосу, взятую за единицу, либо полосу произвольной ширины, состоящей из множества поддиапазонов.

Кроме того, здесь и далее для полосы масштабных коэффициентов или другой полосы, состоящей из нескольких поддиапазонов, среднее значение энергий в соответственных поддиапазонах, составляющих эту полосу, также будет определять среднюю энергию этой полосы.

Далее будут описаны кодер и декодер, к которым применён один вариант осуществления. Здесь и далее посредством примера описан случай, в котором проводится генерирование высокочастотного сигнала, принимая полосы масштабных коэффициентов в качестве единиц, но очевидно, что генерирование высокочастотного сигнала можно проводить также над отдельными полосами, состоящими из одного или множества поддиапазонов.

Первый вариант осуществления

Конфигурация кодера

Фиг. 6 иллюстрирует примерную конфигурацию варианта осуществления кодера.

Кодер 11 состоит из понижающего частоту дискретизатора 21, низкочастотной схемы 22 кодирования, то есть схемы кодирования в низкочастотном диапазоне, процессора 23 анализирующего фильтра КвЗФ, высокочастотной схемы 24 кодирования, то есть схемы кодирования в высокочастотном диапазоне, и схемы мультиплексора 25. Входной сигнал, т.е. аудиосигнал подаётся в понижающий частоту дискретизатор 23 и процессор 23 анализирующего фильтра КвЗФ кодера 11.

За счёт дискретизации с понижением частоты подаваемого входного сигнала понижающий частоту дискретизатор 21 выделяет низкочастотный сигнал, т.е. низкочастотные составляющие входного сигнала, и подаёт их в низкочастотную схему 22 кодирования. Низкочастотная схема 22 кодирования кодирует низкочастотный сигнал, поданный от понижающего частоту дискретизатора 21, согласно заданной схеме кодирования и подаёт полученные в результате низкочастотные кодированные данные на схему 25 мультиплексирования. В качестве способа кодирования низкочастотного сигнала существует, например, схема ААС.

Процессор 23 анализирующего фильтра КвЗФ проводит фильтрацию с помощью анализирующего фильтра КвЗФ поданного входного сигнала и разделяет входной сигнал на множество поддиапазонов. Например, вся полоса частот входного сигнала разделяется фильтрацией на 64, и выделяются составляющие этих 64 полос (поддиапазонов). Процессор 23 анализирующего фильтра КвЗФ подаёт сигналы соответственных полос, полученных фильтрацией, на высокочастотную схему 24 кодирования.

Помимо этого, далее сигналы соответственных поддиапазонов входного сигнала принимаются также как назначенные сигналы поддиапазонов. В частности, принимая полосы низкочастотного сигнала, выделенные понижающим частоту дискретизатором 21, в качестве низкочастотного диапазона, поддиапазонные сигналы соответственных поддиапазонов на низкочастотной стороне представляют собой назначенные низкочастотные поддиапазонные сигналы, т.е. сигналы полос низкочастотного диапазона. Кроме того, принимая полосы более высокой частоты, нежели полосы на низкочастотной стороне, среди всех полос входного сигнала в качестве высокочастотного диапазона, поддиапазонные сигналы поддиапазонов высокочастотной стороны принимаются как назначенные высокочастотные поддиапазонные сигналы, т.е. сигналы полос высокочастотного диапазона.

Далее, в нижеследующем, будет продолжаться описание, принимающее полосы более высокой частоты, нежели низкочастотный диапазон, в качестве высокочастотного диапазона, но часть низкочастотного диапазона и высокочастотный диапазон могут также перекрываться. Иными словами, может иметь место такое выполнение, что в него включены полосы, взаимно используемые низкочастотным диапазоном и высокочастотным диапазоном.

Высокочастотная схема 24 кодирования генерирует информацию SBR на основе поддиапазонных сигналов, поданных от процессора 23 анализирующего фильтра КвЗФ, и подаваемых на схему 25 мультиплексирования. Здесь, информация SBR представляет собой информацию для получения энергий полос масштабных коэффициентов соответственных полос масштабных коэффициентов на высокочастотной стороне входного сигнала, т.е. исходного сигнала.

Схема 25 мультиплексирования мультиплексирует низкочастотные кодированные данные от низкочастотной схемы 22 кодирования и информацию SBR от высокочастотной кодирующей схемы 24 и выводит поток двоичных разрядов, полученный мультиплексированием.

Описание процесса кодирования

Итак, если в кодер 11 вводится входной сигнал и выдаётся команда на кодирование этого входного сигнала, кодер 11 проводит процесс кодирования и осуществляет кодирование входного сигнала. Далее процесс кодирования кодером 11 будет описан со ссылкой на блок-схему алгоритма Фиг. 7.

На этапе S11 понижающий частоту дискретизатор 21 дискретизирует поданный входной сигнал с понижением частоты, выделяет низкочастотный сигнал и подаёт его в низкочастотную схему 22 кодирования.

На этапе S12 низкочастотная схема 22 кодирования кодирует низкочастотный сигнал, поданный от понижающего частоту дискретизатора 21, согласно, например, схеме ААС и подаёт полученные в результате низкочастотные закодированные данные на схему 25 мультиплексирования.

На этапе S13 процессор 23 анализирующего фильтра КвЗФ проводит фильтрацию с помощью анализирующего фильтра КвЗФ поданного входного сигнала и подаёт полученные в результате поддиапазонные сигналы соответственных поддиапазонов на высокочастотную схему 24 кодирования.

На этапе S14 высокочастотная схема 24 кодирования вычисляет энергию Eobj высокочастотной полосы масштабных коэффициентов, то есть информацию энергии для каждой полосы масштабных коэффициентов на высокочастотной стороне на основе поддиапазонных сигналов, поданных от процессора 23 анализирующего фильтра КвЗФ.

Иными словами, высокочастотная схема 24 кодирования принимает полосу, состоящую из нескольких следующих друг за другом поддиапазонов на высокочастотной стороне, в качестве полосы масштабных коэффициентов и использует поддиапазонные сигналы соответственных поддиапазонов в полосе масштабных коэффициентов для вычисления энергии каждого поддиапазона. Затем, высокочастотная схема 24 кодирования вычисляет среднее значение энергий каждого поддиапазона в полосе масштабных коэффициентов и принимает вычисленное среднее значение энергий в качестве энергии Eobj высокочастотной полосы масштабных коэффициентов в полосе масштабных коэффициентов. Таким образом вычисляются энергии высокочастотной полосы масштабных коэффициентов, т.е., например, информация энергии Eobj1-Eobj7 на Фиг. 5.

На этапе S15 высокочастотная схема 24 кодирования кодирует энергии Eobj высокочастотной полосы масштабных коэффициентов для множества полос масштабных коэффициентов, то есть информацию энергии согласно заданной схеме кодирования и генерирует информацию SBR. Например, энергии Eobj высокочастотной полосы масштабных коэффициентов кодируются согласно скалярному квантованию, дифференциальному кодированию, кодированию с переменной длиной или по иной схеме. Высокочастотная схема 24 кодирования подаёт полученную кодированием информацию SBR на схему 25 мультиплексирования.

На этапе S16 схема 25 мультиплексирования мультиплексирует низкочастотные кодированные данные от низкочастотной схемы 22 кодирования и информацию SBR от высокочастотной схемы 24 кодирования и выводит поток двоичных разрядов, полученный мультиплексированием. Процесс кодирования заканчивается.

При этом кодер 11 кодирует входной сигнал и выводит поток двоичных разрядов, мультиплексированный из низкочастотных кодированных данных и информации SBR. Следовательно, на принимающей этот поток двоичных разрядов стороне низкочастотные кодированные данные декодируются для получения низкочастотного сигнала, то есть сигнала низкочастотного диапазона, причём помимо этого низкочастотный сигнал и информация SBR используются для генерирования высокочастотного сигнала, то есть сигнала высокочастотного диапазона. Можно получить аудиосигнал с более широкой полосой, состоящий из низкочастотного сигнала и высокочастотного сигнала.

Конфигурация декодера

Далее будет описан декодер, который принимает и декодирует поток двоичных разрядов, выведенный из кодера 11 на Фиг. 6. Декодер выполнен, например, как показано на Фиг. 8.

Иными словами, декодер 51 состоит из схемы 61 демультиплексирования, низкочастотной схемы 62 декодирования, то есть схемы декодирования в низкочастотном диапазоне, процессора 63 анализирующего фильтра КвЗФ, высокочастотной схемы 64 декодирования, то есть схемы декодирования в высокочастотном диапазоне, и процессора 65 синтезирующего фильтра КвЗФ, то есть схемы.

Схема 61 демультиплексирования демультиплексирует поток двоичных разрядов, принятый от кодера 11, и выделяет низкочастотные кодированные данные и информацию SBR. Схема 61 демультиплексирования подаёт полученные демультиплексированием низкочастотные кодированные данные на низкочастотную схему 62 декодирования и подаёт полученную мультиплексированием информацию SBR на высокочастотную схему 64 декодирования.

Низкочастотная схема 62 декодирования декодирует низкочастотные кодированные данные, поданные от схемы 61 демультиплексирования, посредством схемы декодирования, которая соответствует схеме кодирования низкочастотного сигнала (например, схеме ААС), используемой кодером 11, и подаёт полученный в результате низкочастотный сигнал, то есть сигнал низкочастотного диапазона, на процессор 63 анализирующего фильтра КвЗФ. Процессор 63 анализирующего фильтра КвЗФ проводит фильтрацию с помощью анализирующего фильтра КвЗФ низкочастотного сигнала, поданного от низкочастотной схемы 62 декодирования, и выделяет из низкочастотного сигнала поддиапазонные сигналы соответственных поддиапазонов на низкочастотной стороне. Иными словами, производится полосовое разделение низкочастотного сигнала. Процессор 63 анализирующего фильтра КвЗФ подаёт низкочастотные поддиапазонные сигналы, то есть сигналы низкочастотного диапазона соответственных поддиапазонов на низкочастотной стороне, которые были получены фильтрацией, на высокочастотную схему 64 декодирования и процессор 65 синтезирующего фильтра SBR.

Используя информацию SBR, поданную от схемы 61 демультиплексирования, и низкочастотные поддиапазонные сигналы, то есть сигналы полос низкочастотного диапазона, поданные от процессора 63 анализирующего фильтра КвЗФ, высокочастотная схема 64 декодирования генерирует высокочастотные сигналы для соответственных полос масштабных коэффициентов на высокочастотной стороне и подаёт их на процессор 65 синтезирующего фильтра КвЗФ.

Процессор 65 синтезирующего фильтра КвЗФ синтезирует, то есть объединяет низкочастотные поддиапазонные сигналы, поданные от процессора 63 анализирующего фильтра КвЗФ, и высокочастотные сигналы, поданные от высокочастотной схемы 64 декодирования, согласно фильтрации с помощью синтезирующего фильтра КвЗФ и генерирует выходной сигнал. Этот выходной сигнал представляет собой аудиосигнал, состоящий из соответственных низкочастотных и высокочастотных поддиапазонных составляющих, и выводится от процессора 65 синтезирующего фильтра КвЗФ на следующий далее громкоговоритель или другой воспроизводящий блок.

Описание процесса декодирования

Если поток двоичных разрядов от кодера 11 подаётся на декодер 51, показанный на Фиг. 8, и выдаётся команда на декодирование этого потока двоичных разрядов, декодер 51 проводит процесс декодирования и генерирует выходной сигнал. Далее процесс декодирования декодером 51 будет описан со ссылкой на Фиг. 9.

На этапе S41 схема 61 демультиплексирования демультиплексирует поток двоичных разрядов, принятый от кодера 11. Затем схема 61 демультиплексирования подаёт низкочастотные кодированные данные, полученные демультиплексированием потока двоичных разрядов, на низкочастотную схему 62 декодирования и, помимо этого, подаёт информацию SBR на высокочастотную схему 64 декодирования.

На этапе S42 низкочастотная схема 62 декодирования декодирует низкочастотные кодированные данные, поданные от низкочастотной схемы 62 декодирования, и подаёт полученный в результате низкочастотный сигнал, то есть сигнал низкочастотного диапазона, на процессор 63 анализирующего фильтра КвЗФ.

На этапе S43 процессор 63 анализирующего фильтра КвЗФ проводит фильтрацию с помощью анализирующего фильтра КвЗФ низкочастотного сигнала, поданного от низкочастотной схемы 62 декодирования. Затем, процессор 63 анализирующего фильтра КвЗФ подаёт низкочастотные поддиапазонные сигналы, т.е. полосовые сигналы низкочастотного диапазона, соответственных поддиапазонов на низкочастотной стороне, которые были получены при фильтрации, на высокочастотную декодирующую схему 64 и процессор 65 синтезирующего фильтра КвЗФ.

На этапе S44 высокочастотная схема 64 декодирования декодирует информацию SBR, поданную из низкочастотной схемы 62 декодирования. Таким образом получаются энергии Eobj высокочастотных полос масштабных коэффициентов, то есть информация энергий соответствующих полос масштабных коэффициентов на высокочастотной стороне.

На этапе S45 высокочастотная схема 64 декодирования проводит процесс выравнивания, то есть процесс сглаживания низкочастотных поддиапазонных сигналов, поданных от процессора 63 анализирующего фильтра КвЗФ.

Например, для конкретной полосы масштабных коэффициентов на высокочастотной стороне высокочастотная схема 64 декодирования принимает полосу масштабных коэффициентов на низкочастотной стороне, которая используется для генерирования высокочастотного сигнала для этой полосы масштабных коэффициентов в качестве целевой полосы масштабных коэффициентов для процесса выравнивания. Здесь, полосы масштабных коэффициентов на низкочастотной стороне, которые используются для генерирования высокочастотных сигналов для соответствующих полос масштабных коэффициентов на высокочастотной стороне, принимаются как определённые заранее.

Затем высокочастотная схема 64 декодирования проводит фильтрацию с помощью выравнивающего фильтра низкочастотных поддиапазонных сигналов соответствующих поддиапазонов, составляющих обрабатываемую целевую полосу масштабных коэффициентов на низкочастотной стороне. Конкретнее, на основе низкочастотных поддиапазонных сигналов соответственных поддиапазонов, составляющих обрабатываемую целевую полосу масштабных коэффициентов на низкочастотной стороне, высокочастотная схема 64 декодирования вычисляет энергии этих поддиапазонов и вычисляет среднее значение вычисленных энергий соответственных поддиапазонов в качестве средней энергии. Высокочастотная схема 64 декодирования выравнивает низкочастотные поддиапазонные сигналы соответственных поддиапазонов путём умножения этих низкочастотных поддиапазонных сигналов соответственных поддиапазонов, составляющих обрабатываемую целевую полосу масштабных коэффициентов, на отношение между энергиями этих поддиапазонов и средней энергией.

Например, предположим, что полоса масштабных коэффициентов, принятая в качестве цели обработки, состоит из трёх поддиапазонов SB1-SB3, и предположим, что энергии Е1-Е3 получены в качестве энергий этих поддиапазонов. В этом случае, среднее значение энергий Е1-Е3 поддиапазонов SB1-SB3 вычисляется как средняя энергия ЕА.

Затем значения отношений этих энергий, т.е. ЕА/Е1, ЕА/Е2 и ЕА/Е3 умножаются на соответственные низкочастотные поддиапазонные сигналы поддиапазонов SB1-SB3. таким образом, низкочастотный поддиапазонный сигнал, умноженный на отношение энергий, принимается в качестве выравниваемого низкочастотного поддиапазонного сигнала.

Здесь может быть также предусмотрено, что низкочастотные поддиапазонные сигналы выравниваются путём умножения отношения между максимальным значением энергий Е1-Е3 и энергией поддиапазона на низкочастотный поддиапазонный сигнал этого поддиапазона. Выравнивание низкочастотных поддиапазонных сигналов соответственных поддиапазонов может проводиться любым образом при условии, что выравнивается спектр мощности полосы масштабных коэффициентов, состоящей из этих поддиапазонов.

При этом для каждой предназначенной впредь для генерирования полосы масштабных коэффициентов на высокочастотной стороне выравниваются низкочастотные поддиапазонные сигналы соответственных поддиапазонов, составляющие полосы масштабных коэффициентов на низкочастотной стороне, которые используются для генерирования этих полос масштабных коэффициентов.

На этапе S46 для соответственных полос масштабных коэффициентов на низкочастотной стороне, которые используются для генерирования полос масштабных коэффициентов на высокочастотной стороне, высокочастотная схема 64 декодирования вычисляет средние энергии Eorg этих полос масштабных коэффициентов.

Конкретнее, высокочастотная схема 64 декодирования вычисляет энергии соответственных поддиапазонов за счёт использования выравниваемых низкочастотных поддиапазонных сигналов соответственных поддиапазонов, составляющих полосу масштабных коэффициентов на низкочастотной стороне, и дополнительно вычисляет среднее значение этих поддиапазонных энергий как среднюю энергию Eorg.

На этапе S47 высокочастотная схема 64 декодирования сдвигает по частоте сигналы соответственных полос масштабных коэффициентов на низкочастотной стороне, то есть полосовые сигналы низкочастотного диапазона, которые используются для генерирования полос масштабных коэффициентов на высокочастотной стороне, то есть полосовых сигналов высокочастотного диапазона в частотные диапазоны полос масштабных коэффициентов на высокочастотной стороне, которые надлежит генерировать. Иными словами, выравниваемые низкочастотные поддиапазонные сигналы соответственных поддиапазонов, составляющих полосы масштабных коэффициентов на низкочастотной стороне, сдвигаются по частоте, чтобы генерировать сигналы полос высокочастотного диапазона.

На этапе S48 высокочастотная схема 64 декодирования регулирует усиление сдвинутых по частоте низкочастотных поддиапазонных сигналов согласно отношениям между энергиями Eobj высокочастотных полос масштабных коэффициентов и средними энергиями Eorg и генерирует высокочастотные поддиапазонные сигналы для полос масштабных коэффициентов на высокочастотной стороне.

Например, предположим, что полоса масштабных коэффициентов на высокочастотной стороне, которая предназначена для дальнейшего генерирования, назначается высокочастотной полосой масштабных коэффициентов, и что полоса масштабных коэффициентов на низкочастотной стороне, которая используется для генерирования этой высокочастотной полосы масштабных коэффициентов, называется низкочастотной полосой масштабных коэффициентов.

Высокочастотная схема 64 декодирования регулирует усиление выравниваемых низкочастотных поддиапазонных сигналов так, что среднее значение энергий сдвинутых по частоте низкочастотных поддиапазонных сигналов соответственных поддиапазонов, составляющих низкочастотную полосу масштабных коэффициентов, становится почти той же самой величины, что и энергия высокочастотной полосы масштабных коэффициентов в высокочастотной полосе масштабных коэффициентов.

При этом сдвинутые по частоте и отрегулированные по усилению низкочастотные поддиапазонные сигналы принимаются в качестве высокочастотных поддиапазонных сигналов для соответственных поддиапазонов высокочастотной полосы масштабных коэффициентов, и сигнал, состоящий из высокочастотных поддиапазонных сигналов соответственных поддиапазонов масштабных коэффициентов на высокочастотной стороне, принимается в качестве сигнала полос масштабных коэффициентов на высокочастотной стороне (высокочастотный сигнал). Высокочастотная схема 64 декодирования подаёт генерируемые высокочастотные сигналы соответственных полос масштабных коэффициентов на высокочастотной стороне на процессор 65 синтезирующего фильтра КвЗФ.

На этапе S49 процессор 65 синтезирующего фильтра КвЗФ синтезирует, т.е. объединяет низкочастотные поддиапазонные сигналы, поданные от процессора 63 анализирующего фильтра КвЗФ, и высокочастотные сигналы, поданные от высокочастотной схемы 64 декодирования, согласно фильтрации с помощью синтезирующего фильтра КвЗФ, и генерирует выходной сигнал. Затем процессор 65 синтезирующего фильтра КвЗФ выводит генерируемый выходной сигнал, и процесс декодирования заканчивается.

При этом, декодер 51 выравнивает, то есть сглаживает низкочастотные поддиапазонные сигналы и использует выравниваемые низкочастотные поддиапазонные сигналы и информацию SBR, чтобы генерировать высокочастотные сигналы для соответствующих полос масштабных коэффициентов на высокочастотной стороне. Таким образом, за счёт использования выравниваемых низкочастотных поддиапазонных сигналов для генерирования высокочастотных сигналов можно легко получить выходной сигнал для воспроизведения звукового сигнала с более высоким качеством звучания.

Здесь, в приведённом описании все полосы на низкочастотной стороне описаны как выравниваемые, то есть сглаженные. Однако на стороне декодера 51 выравнивание может также проводиться только над полосой, где происходит провал, среди низкочастотного диапазона. В некоторых случаях низкочастотные сигналы используются в декодере 51, например, и обнаруживается частотная полоса, где происходит провал.

Второй вариант осуществления

Описание процесса кодирования

Кроме того, кодер 11 может быть выполнен с возможностью генерирования информации положения полосы, в которой происходит провал в низкочастотном диапазоне, и информации для выравнивания этой полосы, и выведения информации SBR, включающий эту информацию. В таких случаях кодер 11 проводит процесс кодирования, показанный на Фиг. 10.

Далее процесс кодирования будет описан со ссылкой на блок-схему алгоритма на Фиг. 10 для случая выведения информации SBR, включающей информацию положения и т.п. полосы, в которой происходит провал.

Здесь, поскольку обработка на этапах S71-S73 аналогична обработке на этапах S11-S13 на Фиг. 7, её описание опущено или сокращено. Когда проводится обработка на этапе S73, поддиапазонные сигналы соответственных поддиапазонов подаются на высокочастотную схему 24 кодирования.

На этапе S74 высокочастотная схема 24 кодирования обнаруживает полосы с провалом среди полос низкочастотного диапазона на основе низкочастотных поддиапазонных сигналов поддиапазонов на низкочастотной стороне, которые были поданы из процессора 23 анализирующего фильтра КвЗФ.

Конкретнее, высокочастотная схема 24 кодирования вычисляет среднюю энергию EL, т.е. среднее значение энергий всего низкочастотного диапазона путём вычисления, например, среднего значения энергий соответственных поддиапазонов в низкочастотном диапазоне. Затем, среди поддиапазонов в низкочастотном диапазоне высокочастотная схема 24 кодирования обнаруживает поддиапазоны, в которых разность между средней энергией EL и энергией поддиапазона становится равной или больше, чем заранее заданное пороговое значение. Иными словами, обнаруживаются поддиапазоны, для которых значение, полученное вычитанием энергии поддиапазона из средней энергии EL равно или больше, чем пороговое значение.

Далее, высокочастотная схема 24 кодирования принимает полосу, состоящую из описанных выше поддиапазонов, для которых указанная разность становится равной или больше, чем пороговое значение, и являющуюся также полосой, состоящей из нескольких следующих один за другим поддиапазонов, в качестве полосы с провалом (обозначенной далее «выравниваемая полоса»). Здесь, могут иметь место случаи, когда выравниваемая полоса является полосой, состоящей из одного поддиапазона.

На этапе S75 высокочастотная схема 24 кодирования вычисляет для каждой выравниваемой полосы информацию выравниваемого положения, указывающую положение выравниваемой полосы, и информацию выравниваемого усиления, используемую для выравнивания выравниваемой полосы. Высокочастотная схема 24 кодирования принимает информацию, состоящую из информации выравниваемого положения и информации выравниваемого усиления для каждой выравниваемой полосы, в качестве информации выравнивания.

Конкретнее, высокочастотная схема 24 кодирования принимает информацию, указывающую полосу, принятую в качестве выравниваемой полосы, как информацию выравниваемого положения. Кроме того, высокочастотная схема 24 кодирования вычисляет для каждого поддиапазона, составляющего выравниваемую полосу, разность DE между средней энергией EL и энергией этого поддиапазона и принимает информацию, состоящую из этой разности DE каждого поддиапазона, составляющего выравниваемую полосу, в качестве информации выравнивающего усиления.

На этапе S76 высокочастотная схема 24 кодирования вычисляет энергии Eobj высокочастотных полос масштабных коэффициентов соответственных полос масштабных коэффициентов на высокочастотной стороне на основе поддиапазонных сигналов, поданных от процессора 23 анализирующего фильтра КвЗФ. Здесь, на этапе S76 проводится обработка, аналогичная обработке на этапе S14 Фиг. 7.

На этапе S77 высокочастотная схема 24 кодирования кодирует энергии Eobj высокочастотных полос масштабных коэффициентов соответственных полос масштабных коэффициентов на высокочастотной стороне и информацию выравнивания соответственных выравниваемых полос согласно схеме кодирования, такой как скалярное квантование, и генерирует информацию SBR. Высокочастотная схема 24 кодирования подаёт генерируемую информацию SBR на схему 25 мультиплексирования.

После этого проводится обработка на этапе S78 и процесс кодирования заканчивается, но поскольку обработка на этапе S78 аналогична обработке на этапе S16 Фиг. 7, её описании опущено или сокращено.

При этом кодер 11 обнаруживает выравниваемые полосы из низкочастотного диапазона и выводит информацию SBR, включающую в себя информацию выравнивания, используемую для выравнивания соответственных выравниваемых полос, вместе с низкочастотными кодированными данными. Таким образом, на стороне декодера 51 становится возможным более легко проводить выравнивание выравниваемых полос.

Описание процесса декодирования

Итак, если поток на декодер 51 передаётся двоичных разрядов, выдаваемый процессом кодирования, описанным со ссылкой на Фиг. 10, декодер 51, который принимает этот поток двоичных разрядов, проводит процесс декодирования, показанный на Фиг. 11. Далее процесс декодирования декодером 51 будет описан со ссылкой на блок-схему Фиг. 11.

Здесь, поскольку обработка на этапах S101-S104 такая же, как на этапах S41-S44 по Фиг. 9, их описание опущено или сокращено. Однако при обработке на этапе S104 энергии Eobj высокочастотных полос масштабных коэффициентов и информация выравнивания соответственных выравниваемых полос получается путём декодирования информации SBR.

На этапе S105 высокочастотная схема 64 декодирования использует информацию выравнивания, чтобы выровнять выравниваемые полосы, указанные информацией выравниваемого положения, включённой в информацию выравнивания. Иными словами, высокочастотная схема 64 декодирования проводит выравнивание путём добавления разности DE поддиапазона к низкочастотному поддиапазонному сигналу этого поддиапазона, составляющего выравниваемую полосу, указанную информацией выравниваемого положения. Здесь, разность DE для каждого поддиапазона выравниваемой полосы представляет собой информацию, включённую в информацию выравнивания в качестве информации выравниваемого усиления.

При этом выравниваются низкочастотные поддиапазонные сигналы соответственного поддиапазона, составляющего выравниваемую полосу, из числа поддиапазонов на низкочастотной стороне. После этого используются выравниваемые низкочастотные поддиапазонные сигналы, проводятся этапы S106-S109 и процесс декодирования заканчивается. Здесь, поскольку обработка на этапах S106-S109 аналогична обработке на этапах S46-S49 по Фиг. 9, её описание опускается или сокращается.

При этом, декодер 51 использует информацию выравнивания, включённую в информацию SBR, проводит выравнивание выравниваемых полос и генерирует высокочастотные сигналы для соответственных полос масштабных коэффициентов на высокочастотной стороне. При проведении выравнивания выравниваемых полос с помощью информации выравнивания таким образом высокочастотные сигналы могут генерироваться более легко и быстро.

Третий вариант осуществления

Описание процесса кодирования

Кроме того, во втором варианте осуществления выравниваемая информация описывается как включённая сама по себе в информацию SBR и передаваемая на декодер 51. Однако может иметь место такое выполнение, что выравниваемая информация является векторно квантованной и включённой в информацию SBR.

В таких случаях высокочастотная схема 24 кодирования кодера регистрирует таблицу положений, в которой связываются множество векторов информации выравниваемых положений, то есть информации положения сглаживания, и индексов положений, определяющих эти векторы информации выравниваемых положений, например. Здесь, вектор информации выравниваемых положений является вектором, принимающим соответственную информацию выравниваемого положения одной или множества выравниваемых полос в качестве её элементов, и является вектором, полученным путём выстраивания этой информации выравниваемых положений по порядку от наименьшей частоты выравниваемой полосы.

Здесь, в таблице положений регистрируются не только взаимно различные векторы информации выравниваемого положения, состоящие из одних и тех же чисел элементов, но также множество векторов информации выравниваемого положения, состоящих из взаимно различных чисел элементов.

Далее, высокочастотная схема 24 кодирования кодера 11 регистрирует таблицу усилений, в которой связываются множество векторов информации выравниваемого положения и индексы усиления, определяющие эти векторы информации выравниваемого положения. Здесь, вектор информации выравниваемого положения представляет собой вектор, принимающий информацию выравниваемого усиления одной или множества выравниваемых полос в качестве его элементов, и является вектором, полученным путём выстраивания информации усиления по порядку от наименьшей частоты выравниваемой полосы.

Аналогично случаю таблицы положений, в таблице усилений регистрируются не только множество взаимно различных векторов информации выравниваемого усиления, состоящих из одних и тех же чисел элементов, но также множество векторов информации выравниваемого усиления, состоящих из множества различных чисел элементов.

В случае, когда таблица положений и таблица усилений регистрируются в кодере 11 таким образом, кодер 11 проводит процесс кодирования, показанный на Фиг. 12. Далее процесс кодирования кодером 11 будет описан со ссылкой на блок-схему алгоритма по Фиг. 12.

Здесь, поскольку соответственная обработка на этапах S141-S145 аналогична соответственным этапам S71-S75 по Фиг. 10, её описание опускается или сокращается.

Если проводится обработка на этапе S145, информация выравниваемого положения и информация выравниваемого усиления получается для соответственных выравниваемых полос в низкочастотном диапазоне входного сигнала. Затем высокочастотная схема 24 кодирования выстраивает информацию выравниваемого положения соответственных выравниваемых полос по порядку от полосы с наименьшей частотой и принимает её в качестве вектора информации выравниваемой полосы, а вдобавок выстраивает информацию выравниваемого усиления соответственных выравниваемых полос по порядку от полосы с наименьшей частотой и принимает её в качестве вектора информации выравниваемого усиления.

На этапе S146 высокочастотная схема 24 кодирования получает индекс положения и индекс усиления, соответствующие полученным вектору информации выравниваемого положения и вектору информации выравниваемого усиления.

Иными словами, среди векторов информации выравниваемого положения, зарегистрированных в таблице положений, высокочастотная схема 24 кодирования определяет вектор информации положения с кратчайшим эвклидовым расстоянием к вектору информации выравниваемого положения, полученному на этапе S145. Затем из таблицы положений высокочастотная схема 24 кодирования получает индекс положения, связанный с конкретным вектором информации выравниваемого положения.

Аналогично, среди векторов информации выравниваемого усиления, зарегистрированных в таблице усилений, высокочастотная схема 24 кодирования определяет вектор информации усиления с кратчайшим эвклидовым расстоянием к вектору информации выравниваемого усиления, полученному на этапе S145. Затем из таблицы усилений высокочастотная схема 24 кодирования получает индекс усиления, связанный с конкретным вектором информации выравниваемого усиления.

При этом, если получены индекс положения и индекс усиления, вслед за этим проводится обработка на этапе S147, и вычисляются энергии Eobj для соответственных полос масштабных коэффициентов на высокочастотной стороне. Здесь, поскольку обработка на этапе S147 аналогична обработке на этапе S76 по Фиг. 10, её описание опускается или сокращается.

На этапе S148 высокочастотная схема 24 кодирования кодирует соответственные энергии Eobj высокочастотных полос масштабных коэффициентов, равно как и индекс положения и индекс усиления, полученные на этапе S146, согласно схеме кодирования, такой как скалярное квантование, и генерирует информацию SBR. Высокочастотная схема 24 кодирования подаёт генерируемую информацию SBR на схему 25 мультиплексирования.

После этого, проводится обработка на этапе S149 и процесс кодирования заканчивается, но, поскольку обработка на этапе S149 аналогична обработке на этапе S78 по Фиг. 10, её описание опускается или сокращается.

При этом кодер 11 обнаруживает выравниваемые полосы из низкочастотного диапазона и выводит информацию SBR, включающую в себя индекс положения и индекс усиления, для получения выравниваемой информации, используемой для выравнивания соответственных выравниваемых полос, вместе с низкочастотными кодированными данными. Таким образом, можно уменьшить объём информации потока двоичных разрядов, выдаваемого кодером 11.

Описание процесса декодирования

Кроме того, в случае, когда в информацию SBR включены индекс положения и индекс усиления, таблица положений и таблица усилений заранее регистрируются высокочастотной схемой 64 декодирования декодера 51.

Таким образом, в случае, когда декодер 51 регистрирует таблицу положений и таблицу усилений, декодер 51 проводит процесс декодирования, показанный на Фиг. 13. Далее, процесс декодирования декодером 51 будет описан со ссылкой на блок-схему алгоритма по Фиг. 13.

Здесь, поскольку обработка на этапах S171-S174 аналогична обработке на этапах S101-S104 по Фиг. 11, её описание опускается или сокращается. Однако при обработке на этапе S174 энергии Eobj высокочастотных полос масштабных коэффициентов, равно как и индекс положения и индекс усиления получаются при декодировании информации SBR.

На этапе S175 высокочастотная схема 64 декодирования получает вектор информации выравниваемого положения и вектор информации выравниваемого усиления на основе индекса положения и индекса усиления.

Иными словами, высокочастотная схема 64 декодирования получает из зарегистрированной таблицы положений вектор информации выравниваемого положения, связанный с полученным при декодировании индексом положения, и получает из зарегистрированной таблицы усилений вектор информации выравниваемого усиления, связанный с полученным при декодировании индексом усиления. Из вектора информации выравниваемого положения и вектора информации выравниваемого усиления, полученных таким образом, получается информация выравнивания соответственных выравниваемых полос, т.е. информация выравниваемого положения и информация выравниваемого усиления соответственных выравниваемых полос.

Если получена информация выравнивания соответственных выравниваемых полос, то после этого проводится обработка на этапах S176-S180, и процесс декодирования заканчивается, но, поскольку эта обработка аналогична обработке на этапах S105-S109 по Фиг. 11, её описание опускается или сокращается.

При этом декодер 51 проводит выравнивание выравниваемых полос за счёт получения информации выравнивания соответственных выравниваемых полос из индекса положения и индекса усиления, включённых в информацию SBR, и генерирует высокочастотные сигналы для соответственных полос масштабных коэффициентов. За счёт получения информации выравнивания из индекса положения и индекса усиления таким образом можно уменьшить объём информации потока двоичных разрядов.

Вышеописанная последовательность обработки может исполняться аппаратно или программно. В случае исполнения последовательности обработок программно, программа, составляющая такое программное обеспечение, устанавливается с машиночитаемого носителя данных на компьютер, встроенный в специализированное аппаратное обеспечение, либо, альтернативно, например, на универсальный персональный компьютер и т.п., способный исполнять разнообразные функции за счёт установки различных программ.

Фиг. 14 является блок-схемой, иллюстрирующей примерное аппаратное выполнение компьютера, который исполняет вышеописанную последовательность обработок согласно программе.

В компьютере центральный процессор (ЦП) (CPU) 201, постоянно запоминающее устройство (ПЗУ) (ROM) 202 и оперативное запоминающее устройство (ОЗУ) (RAM) 203 связаны друг с другом шиной 204.

Помимо этого с шиной 204 связан интерфейс 205 ввода-вывода. С интерфейсом 205 ввода-вывода связан блок 206 ввода, состоящий из клавиатуры, мыши, микрофона и т.п., блок 207 вывода, состоящий из устройства отображения, громкоговорителей и т.п., блок 208 записи, состоящий из жёсткого диска, энергонезависимой памяти и т.п., блок 209 связи, состоящий из сетевого интерфейса и т.п., и привод 210 для управления съёмным носителем 211 данных, таким как магнитный диск, оптический диск, магнитооптический диск или полупроводниковая память.

В компьютере, выполненном так, как указано выше, вышеописанная последовательность обработок проводится вследствие того, что, например, ЦП 201 загружает программу, записанную на машиночитаемом носителе 208 данных, в ОЗУ 203 через интерфейс 205 ввода-вывода и шину 204 и исполняет эту программу.

Программа, исполняемая компьютером (ЦП 201), например, может быть записана на съёмный носитель 211 данных, который представляет собой группу носителей, состоящую из магнитных дисков (в том числе, гибких дисков), оптических дисков (ПЗУ на компакт-дисках, CD-ROM), универсальных цифровых дисков (DVD), магнитооптических дисков или полупроводниковой памяти, и т.п. Альтернативно, программа подаётся по проводной или беспроводной среде передачи, такой как локальная сеть, Интернет или цифровое спутниковое вещание.

Помимо этого, программу можно устанавливать на блок 208 записи через интерфейс 205 ввода-вывода путём загрузки съёмного носителя 211 данных в привод 210. Кроме того, программа может приниматься в блоке 209 связи по проводной или беспроводной среде и устанавливаться на блок 208 записи. В противном случае программа может быть предустановлена в ПЗУ 202 или блоке 208 записи.

Здесь, исполняемая компьютером программа может быть программой, в которой обработки проводятся во временной последовательности согласно порядку, представленному в настоящем описании, или программой, в которой обработки проводятся параллельно или в требуемые моменты времени, как, например, когда производится вызов.

Здесь, варианты осуществления не ограничиваются вышеописанными вариантами осуществления, и возможны различные модификации в объёме, который не отходит от сущности.

Список ссылочных позиций

11 – Кодер

22 – Низкочастотная схема кодирования, то есть схема кодирования низкочастотного диапазона

24 – Высокочастотная схема кодирования, то есть схема кодирования высокочастотного диапазона

25 – Схема мультиплексирования

51 – Декодер

61 – Схема демультиплексирования

63 – Процессор анализирующего фильтра

64 – Высокочастотная схема декодирования, то есть схема генерирования высокочастотного диапазона.

65 – Процессор синтезирующего фильтра КвЗФ, то есть объединяющая схема.

Похожие патенты RU2765345C2

название год авторы номер документа
УСТРОЙСТВО И СПОСОБ ОБРАБОТКИ СИГНАЛА И ПРОГРАММА 2011
  • Ямамото Юкки
  • Тинен Тору
  • Хатанака Мицуюки
RU2550549C2
УСТРОЙСТВО И СПОСОБ ОБРАБОТКИ СИГНАЛА И ПРОГРАММА 2015
  • Ямамото Юки
  • Тинен Тору
  • Хатанака Мицуюки
RU2666291C2
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2024
  • Чоэрлинг, Кристофер
RU2826366C1
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2024
  • Чоэрлинг Кристофер
RU2826489C1
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2022
  • Чоэрлинг, Кристофер
RU2799033C1
ОБРАБОТКА ЗВУКОВЫХ СИГНАЛОВ В ХОДЕ ВЫСОКОЧАСТОТНОЙ РЕКОНСТРУКЦИИ 2011
  • Чоэрлинг Кристофер
RU2530254C2
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2024
  • Чоэрлинг, Кристофер
RU2822579C1
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2023
  • Чоэрлинг, Кристофер
RU2814460C1
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2023
  • Чоэрлинг, Кристофер
RU2805938C1
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРИРОВАНИЯ РЯДА СИГНАЛОВ ВЫСОКОЧАСТОТНЫХ ПОДДИАПАЗОНОВ 2018
  • Чоэрлинг Кристофер
RU2758466C2

Иллюстрации к изобретению RU 2 765 345 C2

Реферат патента 2022 года УСТРОЙСТВО И СПОСОБ ОБРАБОТКИ СИГНАЛА И ПРОГРАММА

Изобретение относится к акустике. Способ обработки аудиосигнала заключается в декодировании принятого сигнала, получении энергетического спектра, в котором возник энергетический провал, фильтрации декодированного сигнала и его разделении на полосы низкочастотного диапазона; в вычислении средней энергии для множества сигналов полос низкочастотного диапазона, вычислении отношения одного выбранного из сигналов полос низкочастотного диапазона, посредством вычисления отношения средней энергии сигналов полос низкочастотного диапазона к энергии выбранного сигнала полос низкочастотного диапазона, умножении сигнала низкочастотного диапазона на отношение для сглаживания энергетического провала сигналов полос низкочастотного диапазона. Затем выполняют сдвиг по частоте сглаженных сигналов полос низкочастотного диапазона, причём посредством указанного частотного сдвига генерируют сигналы полос высокочастотного диапазона из сигналов полос низкочастотного диапазона, объединяют сигналы полос низкочастотного диапазона и сигналы полос высокочастотного диапазона для генерирования выходного сигнала; и выводят выходной сигнал. Технический результат – повышение качества звучания. 3 н.п. ф-лы, 14 ил.

Формула изобретения RU 2 765 345 C2

1. Компьютерно-реализуемый способ обработки аудиосигнала, содержащий этапы, на которых:

декодируют кодированный сигнал, соответствующий аудиосигналу, для получения декодированного сигнала с энергетическим спектром, имеющим форму, включающую в себя энергетический провал;

выполняют фильтрацию декодированного сигнала, причём посредством указанной фильтрации разделяют декодированный сигнал на сигналы полос низкочастотного диапазона;

вычисляют среднюю энергию множества сигналов полос низкочастотного диапазона;

вычисляют отношение одного выбранного из сигналов полос низкочастотного диапазона посредством вычисления отношения средней энергии сигналов полос низкочастотного диапазона к энергии выбранного сигнала полос низкочастотного диапазона;

умножают выбранный сигнал полос низкочастотного диапазона на отношение для сглаживания энергетического провала сигналов полос низкочастотного диапазона;

выполняют частотный сдвиг сглаженных сигналов полос низкочастотного диапазона, причём посредством указанного частотного сдвига генерируют сигналы полос высокочастотного диапазона из сигналов полос низкочастотного диапазона;

объединяют сигналы полос низкочастотного диапазона и сигналы полос высокочастотного диапазона для генерирования выходного сигнала; и

выводят выходной сигнал.

2. Устройство обработки аудиосигнала, содержащее:

схему декодирования низкочастотного диапазона, выполненную с возможностью декодирования кодированного сигнала, соответствующего аудиосигналу, для получения декодированного сигнала с энергетическим спектром, имеющим форму, включающую в себя энергетический провал;

процессор фильтрации, выполненный с возможностью фильтрации декодированного сигнала, причём посредством указанной фильтрации разделяют декодированный сигнал на сигналы полос низкочастотного диапазона;

схему генерирования высокочастотного диапазона, выполненную с возможностью:

вычисления средней энергии множества сигналов полос низкочастотного диапазона;

вычисления отношения одного выбранного из сигналов полос низкочастотного диапазона посредством вычисления отношения средней энергии сигналов полос низкочастотного диапазона к энергии выбранного сигнала полос низкочастотного диапазона;

умножения выбранного сигнала полос низкочастотного диапазона на отношение для сглаживания энергетического провала сигналов полос низкочастотного диапазона; и

выполнения частотного сдвига сглаженных сигналов полос низкочастотного диапазона, причём посредством указанного частотного сдвига генерируют сигналы полос высокочастотного диапазона из сигналов полос низкочастотного диапазона; и

схему объединения, выполненную с возможностью объединения сигналов полос низкочастотного диапазона и сигналов полос высокочастотного диапазона для генерирования выходного сигнала и вывода выходного сигнала.

3. Материальный машиночитаемый носитель данных, содержащий команды, вызывающие выполнение процессором способа обработки аудиосигнала, содержащего этапы, на которых:

декодируют кодированный сигнал, соответствующий аудиосигналу, для получения декодированного сигнала с энергетическим спектром, имеющим форму, включающую в себя энергетический провал;

выполняют фильтрацию декодированного сигнала, причём посредством указанной фильтрации разделяют декодированный сигнал на сигналы полос низкочастотного диапазона;

вычисляют среднюю энергию множества сигналов полос низкочастотного диапазона;

вычисляют отношение одного выбранного из сигналов полос низкочастотного диапазона посредством вычисления отношения средней энергии сигналов полос низкочастотного диапазона к энергии выбранного сигнала полос низкочастотного диапазона;

умножают выбранный сигнал полос низкочастотного диапазона на отношение для сглаживания энергетического провала сигналов полос низкочастотного диапазона;

выполняют частотный сдвиг сглаженных сигналов полос низкочастотного диапазона, причём посредством указанного частотного сдвига генерируют сигналы полос высокочастотного диапазона из сигналов полос низкочастотного диапазона;

объединяют сигналы полос низкочастотного диапазона и сигналы полос высокочастотного диапазона для генерирования выходного сигнала; и выводят выходной сигнал.

Документы, цитированные в отчете о поиске Патент 2022 года RU2765345C2

AU 756289 B2, 09.01.2003
WO 2005086139 A1, 15.09.2005
US 7447631 B2, 04.11.2008
РЕГУЛИРУЕМЫЙ УДЕРЖИВАЮЩИЙ ЭЛЕМЕНТ ДЛЯ УСТРОЙСТВА, ГЕНЕРИРУЮЩЕГО АЭРОЗОЛЬ 2021
  • Батиста, Рюи Нуно
  • Кали, Рикардо
  • Леб, Андреас
RU2821501C1
WO 2010003565 A1, 14.01.2010
US 20100063812 A1, 11.03.2010
WO 1998057436 A2, 17.12.1998
DE 60303689 T2, 19.10.2006.

RU 2 765 345 C2

Авторы

Ямамото Юки

Тинен Тору

Хатанака Мицуюки

Даты

2022-01-28Публикация

2018-08-21Подача