СПОСОБ ОБЕСПЕЧЕНИЯ ЯДЕРНОЙ БЕЗОПАСНОСТИ ВЫСОКОТЕМПЕРАТУРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ Российский патент 2022 года по МПК G21C7/00 G21C7/06 

Описание патента на изобретение RU2767298C1

Область техники

Изобретение относится к области ядерной энергетики, в частности к высокотемпературным ядерным реакторам на быстрых нейтронах. Изобретение относится к способам обеспечения ядерной безопасности ядерных реакторов при их транспортировании и в аварийных ситуациях затопления активной зоны водой.

Уровень техники

Известен способ жидкостного управления ядерным реактором (патент РФ № 1118215), заключающийся в изменении количества управляющей жидкости в объеме регулирования с подводящей и отводящей магистралями, при чем требуемое количество управляющей жидкости в объеме регулирования, получают путем изменения расхода управляющей жидкости в подводящей магистрали до достижения расхода управляющей жидкости в отводящей магистрали, соответствующего требуемому количеству управляющей жидкости в объеме регулирования. Данный способ не может обеспечить безопасность в аварийной ситуации с потерей герметичности и работоспособности подводящей и отводящей магистралями.

Известен способ пассивного управления реактивностью (патент РФ № 2605431), который содержит термозависимый приводящий материал и материал, изменяющий параметр поглощения нейтронов, отличающийся от приводящего материала. Часть материала, изменяющего параметр поглощения нейтронов, находится в физическом контакте с частью приводящего материала. При этом материал, изменяющий параметр поглощения нейтронов, может перемещаться с помощью приводящего материала в выбранную часть активной зоны. Данный способ не может обеспечить безопасность в аварийной ситуации с потерей приводящего материала и в случае пожара и высоких температур.

Известен способ (патент РФ № 2147774), сущность которого заключается в управление реактивностью путем перемещения части топлива между положением, способствующим цепной реакции, и положением ее останова. Перемещаемая часть топлива расположена в полости центральной колонны, проходящей параллельно направлению силы тяжести и размещенной в кольцеобразной активной зоне, и представляет собой засыпку из мелкодисперсных частичек топлива. Через полость противоположно направлению силы тяжести протекает часть основного потока охлаждающей жидкости, удерживающая частички топлива в зоне реакции. При прекращении потока охлаждающего средства в полости частички топлива перемещаются в положение, способствующее останову цепной реакции. Данный способ не может обеспечить безопасность в аварийной ситуации при ударе, направленном в противоположную сторону от действия гравитации, с возвратом топлива в положение способствующим цепной реакции.

Наиболее близким к предлагаемому является следующее изобретение по патенту РФ № 2125304. Способ предполагает эксплуатацию ядерного реактора, содержащего первоначальную загрузку активной зоны топливными сборками, в которых размещены поглотитель нейтронов, торий и топливо, состоящее из смеси изотопов топлива в виде микротвэлов с многослойным покрытием, работу реактора на мощности и полную или частичную перегрузку топлива при этом первоначальную загрузку реактора обеспечивают с массовым отношением тория к топливу в активной зоне от 0,01 до 0,25. Недостатком способа является необходимость участия эксплуатирующего персонала для начала работы реактора и обеспечения его критичности.

Раскрытие сущности изобретения

Для обеспечения ядерной безопасности при аварийных ситуациях, связанных с попаданием малогабаритных реакторов на быстрых нейтронах в замедляющую нейтроны среду при транспортировании, эффективности штатной системы управления защитой (СУЗ) бывает недостаточно. Поэтому в составе активной зоны должна быть предусмотрена дополнительная система ядерной безопасности (ДСЯБ). После доставки реактора на место назначения ДСЯБ удаляется из реактора. В некоторых случаях дополнительная система ядерной безопасности может являться второй независимой системой обеспечения ядерной безопасности и в штатном режиме работы реактора.

Технической проблемой, на решение которой направлено заявляемое изобретение, является возможность обеспечения без аварийной транспортировки малогабаритных реакторов на быстрых нейтронах.

Техническим результатом изобретения является снижение эффективного коэффициента размножения до приемлемых цифр, регламентируемые нормами ядерной безопасности, в условиях обводнения активной зоны (попадания реактора в воду и его затопление) и недопустимости попадания воды в активную зону реактора. Тем самым обеспечивается ядерная безопасность реактора на быстрых нейтронах.

Для достижения технического результата предложен способ обеспечения ядерной безопасности высокотемпературного реактора на быстрых нейтронах, включающий полную загрузку металлического корпуса активной зоны топливными сборками, содержащими поглотитель нейтронов, торий и ядерное топливо из окиси урана-235 в виде микротвэлов, и поглощающие стержни из карбида бора, при этом в промежутки между микротвэлами вводится поглотитель нейтронов, представляющий собой жидкий кадмий, обогащенный по изотопу 113Cd не менее чем на 90%, на внешнюю поверхность металлического корпуса активной зоны ядерного реактора нанесен тонкий 2-6 мм твердый слой карбида бора.

В предпочтительном варианте: топливные сборки выполняют различной формы для включения в активную зону, содержащую шаровые микротвэлы из окиси урана и окиси тория, и заливают расплавом кадмия, после чего формы охлаждают и устанавливают по месту в металлический корпус под контролем системы управления защитой.

Совокупность приведенных выше существенных признаков приводит к тому, что:

Снижается эффективный коэффициент размножения нейтронов;

Совместной эффективности ПС и ДСЯБ достаточно для компенсации положительного эффекта реактивности, возникающего при погружении реактора в воду;

Преимущества малогабаритного реактора с кадмием перед реактором без него заключается в том, что для сохранения ядерной безопасности необходимо увеличивать количество органов регулирования и их размеры, что в свою очередь приводит к увеличению массы загружаемого топлива и габаритам реактора;

Предлагаемый способ имеет широкий диапазон использования для исследовательских реакторов на быстрых нейтронах различного назначения за счет улучшения нейтронно-физических характеристик при транспортировании и более высокой надежности регулирования подкритичности ядерного реактора в аварийных ситуациях, включая заполнение водой;

Повышение эффективности пассивной системы безопасности ядерного реактора при использовании описываемого способа приводит к улучшению технико-экономических показателей эксплуатации транспортабельного ядерного реактора, в частности, снижения количества управляющих органов, блоков СУЗ и снижения массы требуемого обогащенного топлива для обеспечения критичности в нормальных условиях при высоких температурах в активной зоне.

Описание чертежей

На фигуре 1 показана схема высокотемпературного ядерного реактора, где:

1 - внешний корпус;

2 - внутренний корпус;

3 - отражатель;

4 - слой карбида бора;

5 - микротвэлы;

6 - горизонтальные каналы под поглощающие стержни.

На фиг. 2 показан поперечный разрез по А-А, где цифрами обозначены:

1 - внешний корпус;

2 - внутренний корпус;

3 - отражатель;

4 - слой карбида бора;

5 - микротвэлы;

6 - горизонтальные каналы под поглощающие стержни.

На фиг. 3 показан сегмент выделяющей сборки, где позициями обозначены:

5 - микротвэлы;

8 - кадмий;

9 - тепловыделяющая сборка.

Осуществление изобретения

Заявляемое решение заключается в заполнении пространства между микротвэлами в активной зоне реактора поглотителем нейтронов в виде легкоплавкого металлического поглотителя (кадмия), и нанесением тонкого слоя поглотителя (карбида бора) на внешнюю поверхность корпуса активной зоны реактора.

Таким образом, предлагаемый способ практически исключает попадание в объем активной зоны реактора воды при затоплении и снижает влияние окружающей корпус реактора замедлителя (воды).

Сущность предполагаемого способа на примере эксплуатации ядерного реактора поясняется ниже.

При изготовлении плотной упаковки шаровидных микротвэлов может использоваться топливо с различным обогащением для выравнивания поля энерговыделения в активной зоне. В качестве ядерного топлива может использоваться оксид урана или его смесь с оксидом тория. Для формирования тепловыделяющих сборок (ТВС) плотная упаковка микротвэлов заливается жидким кадмием. Причем форма и размеры ТВС могут быть различной формы с учетом компоновки их в активной зоне реактора. Далее ТВС доставляются на сборку и активная зона заполняется ТВС под контролем СУЗ.

Что позволяет уменьшить водородный эффект реактивности, и не допустить залива внутренних пустот активной зоны водой в аварийной ситуации.

В качестве ДСЯБ, в дополнении к штатным поглощающим стержням (ПС), предлагается слой карбида бора на внешней стенки корпуса активной зоны реактора. Для устранения заливания водой внутренних пустот активной зоны, в качестве ДСЯБ на этапе транспортирования ядерного реактора, предложено заполнение пустот кадмием (Cd). Тепловые нейтроны эффективно захватываются только ядрами 113Cd, атомное содержание которого в природном кадмии 12.26%.

Сечение захвата тепловых нейтронов равно 20 тыс. барн, поэтому необходимо использовать кадмий 90% обогащения по 113Cd. Благодаря перечисленному ПС и ДСЯБ компенсируют положительный эффект реактивности, возникающий при погружении реактора на быстрых нейтронах в воду.

После доставки ядерного реактора на место назначения при первом энергетическом пуске реактора, в результате разогрева, Cd испарится, так как температура плавления составляет 594 К, а кипения 1039.5К, что существенно ниже рабочей температуры теплоносителя 2000-3000К. Размещение кадмия в активной зоне, мало сказывается на запасе реактивности, так как реактор с быстрым спектром нейтронов. Системой вакуумирования кадмий удаляется из активной зоны реактора. Слой бора на внешней стенки корпуса активной зоны остается в качестве выгорающего поглотителя, как независимая система ядерной безопасности.

Сам по себе только кадмий не решает проблему безопасности, так же, как и применение только одних ПС с дополнительным слоем бора не достаточно для уменьшения эффективного коэффициента размножения до приемлемых цифр в аварийной ситуации заполнения водой реактора.

Высокотемпературный ядерный реактор с быстрым спектром нейтронов, показанный на фигуре 1, представляет собой два цилиндрических ниобиевых корпуса внешний 1 и внутренний 2. Пространство между внешним и внутренним корпусом занято отражателем нейтронов 3. На внешней поверхности внутреннего корпуса активной зоны ядерного реактора нанесен тонкий слой карбида бора 4. Он наносится вовремя изготовления внутреннего корпуса реактора, например, методом напыления. Активная зона (без замедлителя нейтронов) перед эксплуатацией заполняется плотной упаковкой микротвэл 5 с пористостью (пустотами) для прохода теплоносителя 34%, и поглощающими нейтроны извлекаемыми стержнями (ПС) 6 цилиндрической формы, расположенными в горизонтальных каналах 7. Поглощающие стержни состоят из карбида бора В4С (80% обогащения по 10В). Общее количество ПС определяется необходимым запасом для управления реактором в штатных условиях эксплуатации. ПС имеют поперечное расположение, относительно активной зоны, под углом 90° друг к другу.

Тепловыделяющие элементы (ТВС) 9 представляют собой шаровые микротвэлы с плотной упаковкой залитые кадмием 8. Количество микротвэлов в ТВС определяется плотностью упаковки. Упаковка осуществляется вибрационным способом, после чего, осуществляется прогрев до расплава кадмия и твэлы заливаются расплавом кадмия. Получившиеся ТВС охлаждаются. ТВС выбираются технологом исходя из формы и размера активной зоны. Кубические ТВС в центре активной зоны и сегментные ТВС, загружаемые непосредственно у стенки цилиндрического корпуса активной зоны реактора.

В качестве ядерного топлива применяется смесь двуокиси урана и тория UO2+ThO2 (10% окиси тория от окиси урана) 90% обогащения по 235U.

Изготовление микротвэлов и ТВС из уранового оксидного топлива для реакторов включает следующие технологические этапы.

1. Подготовка ядерного топлива (конверсия UF6 в UO2; приготовление порошков; гранулирование и спекание шариков).

2. Подготовка оболочек твэлов (дефектоскопия, контроль качества).

3. Подготовка комплектующих деталей для сборки ТВС (чехлы, дистанцирующие решетки).

4. Снаряжение твэлов: упаковка шариков в оболочки; заполнение кадмием; контроль качества твэла.

5. Сборка твэлов в ТВС, контроль качества, стендовые испытания.

После транспортировки на место эксплуатации реактор запускается, разогревается выше 1039.5K. Кадмий из активной зоны испаряется в охлаждаемую емкость, после чего в реактор подается теплоноситель и процесс эксплуатации переходит в штатный режим.

Для сравнения эффективности использования кадмия и слоя карбида бора в активной зоне, ниже представлены расчеты для реактора, с предложенным способом и без него. Основные параметры реактора представлены в табл. 1.

Для случая, когда все пустоты в реакторе и окружение реактора заполнялось водой, реализуется максимальный положительный эффект реактивности, и эффективный коэффициент размножения равен 1.348, даже при опущенных ПС↓ в активную зону ядерного реактора. Для компенсации водородного эффекта реактивности, предприняты попытки его уменьшения, с помощью увеличения количества рядов с ПС с 2 до 3 или 4. Даже при 4 рядах ПС (общее количество 16 штук) происходит спад реактивности на 16.8%, эффективный коэффициент размножения принимает значение 1.122. Уже при таком количестве ПС, они занимают ~55% активной зоны.

Значение эффективного коэффициента размножения при использовании дополнительной системы безопасности в виде кадмия и слоя из карбида бора и погруженных (↓) в активную зону ПС равен 0.974.

Использование только кадмия или только ПС с дополнительным слоем из карбида бора недостаточно для обеспечения ядерной безопасности при попадании в водородсодержашую среду, так как значение эффективного коэффициента размножения больше единицы.

Преимуществом предложенного способа обеспечения ядерной безопасности является минимальное количество органов регулирования необходимых для нормальной эксплуатации реактора в штатном режиме, что для малогабаритных реакторов является неоспоримым плюсом.

Похожие патенты RU2767298C1

название год авторы номер документа
ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА КАНАЛЬНОГО ЯДЕРНОГО РЕАКТОРА С ПРОФИЛИРОВАННЫМ ТОПЛИВОМ 2008
  • Петров Игорь Валентинович
  • Шульман Юрий Семенович
  • Рябов Владислав Владимирович
  • Габараев Борис Арсентьевич
  • Петров Анатолий Александрович
  • Купалов-Ярополк Анатолий Игоревич
  • Федосов Александр Михайлович
  • Бурлаков Евгений Викторович
  • Краюшкин Александр Викторович
  • Сорокин Николай Михайлович
  • Быстриков Александр Анатольевич
  • Егоров Анатолий Константинович
RU2372676C1
ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА, АКТИВНАЯ ЗОНА И СПОСОБ ЭКСПЛУАТАЦИИ ВОДО-ВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА 2001
  • Столяревский А.Я.
RU2214633C2
Модульный ядерный реактор на быстрых нейтронах малой мощности с жидкометаллическим теплоносителем и активная зона реактора (варианты) 2019
  • Котов Ярослав Александрович
  • Алексеев Павел Николаевич
  • Гришанин Евгений Иванович
  • Шимкевич Александр Львович
RU2699229C1
СПОСОБ ЭКСПЛУАТАЦИИ ЯДЕРНОГО РЕАКТОРА В ТОПЛИВНОМ ЦИКЛЕ С РАСШИРЕННЫМ ВОСПРОИЗВОДСТВОМ ДЕЛЯЩИХСЯ ИЗОТОПОВ 2015
  • Столяревский Анатолий Яковлевич
RU2601558C1
Быстрый импульсный реактор с модуляцией реактивности 2015
  • Кухарчук Олег Филаретович
  • Фокина Ольга Геннадьевна
RU2611570C1
ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА КАНАЛЬНОГО ЯДЕРНОГО РЕАКТОРА 1995
  • Бурлаков Е.В.
  • Краюшкин А.В.
  • Купалов-Ярополк А.И.
  • Николаев В.А.
  • Панюшкин А.К.
RU2065627C1
АКТИВНАЯ ЗОНА РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ, ТВЭЛ И ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА ДЛЯ ЕЕ СОЗДАНИЯ 2014
  • Леонов Виктор Николаевич
  • Лопаткин Александр Викторович
  • Родина Елена Александровна
  • Чернобровкин Юрий Васильевич
RU2549829C1
БЫСТРЫЙ НАТРИЕВЫЙ РЕАКТОР 1991
  • Шапарь А.В.
  • Илюнин В.Г.
RU2029397C1
ЯДЕРНЫЙ РЕАКТОР НА БЫСТРЫХ НЕЙТРОНАХ С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2018
  • Алексеев Павел Николаевич
  • Гришанин Евгений Иванович
  • Фонарев Борис Ильич
  • Маслов Николай Владимирович
RU2668230C1
ЯДЕРНЫЙ РЕАКТОР С ВОДОЙ ПОД ДАВЛЕНИЕМ С АКТИВНОЙ ЗОНОЙ НА ОСНОВЕ МИКРОТВЭЛОВ И СПОСОБ ОСУЩЕСТВЛЕНИЯ ЕГО РАБОТЫ 2012
  • Гришанин Евгений Иванович
  • Алексеев Павел Николаевич
RU2475869C1

Иллюстрации к изобретению RU 2 767 298 C1

Реферат патента 2022 года СПОСОБ ОБЕСПЕЧЕНИЯ ЯДЕРНОЙ БЕЗОПАСНОСТИ ВЫСОКОТЕМПЕРАТУРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ

Изобретение относится к способу обеспечения ядерной безопасности высокотемпературного реактора на быстрых нейтронах и может быть использовано в ядерных реакторах, в частности с шаровыми микротвэлами. Способ включает полную загрузку металлического корпуса активной зоны топливными сборками, содержащими поглотитель нейтронов, торий и ядерное топливо из окиси урана-235 в виде микротвэлов, а также поглощающие стержни из карбида бора. Причем в промежутки между микротвэлами вводится поглотитель нейтронов, представляющий собой жидкий кадмий, обогащенный не менее чем на 90% по изотопу 113Cd. На внешнюю поверхность металлического корпуса активной зоны ядерного реактора нанесен тонкий 2-6 мм твердый слой карбида бора. Техническим результатом является повышение безопасности реактора при транспортировке, а также возможность снижения количества управляющих органов, блоков СУЗ и снижения массы требуемого обогащенного топлива для обеспечения критичности в нормальных условиях при высоких температурах в активной зоне. 1 з.п. ф-лы, 3 ил., 1 табл.

Формула изобретения RU 2 767 298 C1

1. Способ обеспечения ядерной безопасности высокотемпературного реактора на быстрых нейтронах, включающий полную загрузку металлического корпуса активной зоны топливными сборками, содержащими поглотитель нейтронов, торий и ядерное топливо из окиси урана-235 в виде микротвэлов, и поглощающие стержни из карбида бора, отличающийся тем, что в промежутки между микротвэлами вводится поглотитель нейтронов, представляющий собой жидкий кадмий, обогащенный по изотопу 113Cd не менее чем на 90%, на внешнюю поверхность металлического корпуса активной зоны ядерного реактора нанесен тонкий 2-6 мм твердый слой карбида бора.

2. Способ по п. 1, отличающийся тем, что топливные сборки выполняют различной формы для включения в активную зону, содержащую шаровые микротвэлы из окиси урана и окиси тория, и заливают расплавом кадмия, после чего формы охлаждают и устанавливают по месту в металлический корпус под контролем системы управления защитой.

Документы, цитированные в отчете о поиске Патент 2022 года RU2767298C1

СПОСОБ ЭКСПЛУАТАЦИИ ЯДЕРНОГО РЕАКТОРА 1997
  • Гаврилов П.М.
  • Кондаков В.М.
  • Колчин А.Е.
  • Фатин В.И.
  • Хандорин Г.П.
  • Цыганов А.А.
  • Шадрин Г.Г.
RU2125304C1
СПОСОБ УПРАВЛЕНИЯ РЕАКТИВНОСТЬЮ НЕЙТРОННОЙ ЦЕПНОЙ РЕАКЦИИ В ЯДЕРНОМ РЕАКТОРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Ясбир Зинг
  • Хайко Барнерт
RU2147774C1
УСТРОЙСТВО И СПОСОБЫ УПРАВЛЕНИЯ РЕАКТИВНОСТЬЮ В ЯДЕРНОМ РЕАКТОРЕ ДЕЛЕНИЯ, ЯДЕРНЫЕ РЕАКТОРЫ ДЕЛЕНИЯ И СПОСОБЫ СОЗДАНИЯ УСТРОЙСТВА УПРАВЛЕНИЯ РЕАКТИВНОСТЬЮ 2012
  • Читэм Джесс Р. Третий
  • Корбин Роберт А.
  • Гарретт Майкл И.
  • Джиллилэнд Джон Роджерс
  • Гейзлар Павел
  • Джонс Кристофер Дж.
  • Джонсон Брайан К.
  • Ко Йу-Чих
  • Макуиртер Джон Дэвид
  • Петроски Роберт К.
  • Стир Кеннет Майкл
  • Труонг Бао Х.
  • Воллмер Джеймс М.
  • Уолтер Джошуа К.
  • Уивер Кеван Д.
RU2605431C2
SU 1118215 A1, 27.02.1996
УСТРОЙСТВО ПАССИВНОЙ ЗАЩИТЫ ЯДЕРНОГО РЕАКТОРА 2000
  • Богуш В.Б.
  • Потапов Ю.В.
RU2172986C1
US 20080123795 A1, 29.05.2008
US 20040062340 A1, 01.04.2004
WO 2020016566 A1, 23.01.2020
EP 3437108 A4, 26.02.2020
СПОСОБ ПРОИЗВОДСТВА СУШЕНОГО ГОРЬКОГО ПЕРЦА 2012
  • Остриков Александр Николаевич
  • Дорохин Роман Владимирович
RU2518733C1

RU 2 767 298 C1

Авторы

Писарев Александр Николаевич

Сенявин Александр Борисович

Даты

2022-03-17Публикация

2021-08-11Подача