ИОНООБМЕННЫЙ ФИЛЬТР Российский патент 2022 года по МПК B01D24/02 B01D24/46 B01J47/02 

Описание патента на изобретение RU2768619C1

Изобретение относится к оборудованию для проведения процессов ионного обмена.

Известен ионообменный фильтр с неподвижным слоем ионита, содержащий вертикальный цилиндрический корпус, крышку, днище, верхнее и нижнее дренажно-распределительные устройства, штуцера для ввода исходной воды, регенерационного раствора и промывочной воды, штуцера для вывода очищенной воды, отработанных регенерационного раствора и промывочной воды. Полный цикл ионообменного фильтра складывается из следующих стадий: 1) очистка воды; 2) регенерация ионита; 3) отмывка ионита от регенерационного раствора; 4) взрыхление ионита с целью отмывки его от механических примесей [Иониты в химической технологии / Под ред. Б.П. Никольского и П.Г. Романкова. Л.: Химия, 1982. C. 258].

Недостатком известного ионообменного фильтра является то, что в нем невозможно использовать ионообменные материалы, например, на основе целлюлозы (модифицированные древесные опилки, хлопковую целлюлозу и др.), плотность которых меньше, чем плотность очищаемой воды, поскольку они не образуют внутри аппарата плотный неподвижный слой, а всплывают вверх аппарата.

Наиболее близким по технической сущности, то есть прототипом, является ионообменный фильтр, содержащий цилиндрический корпус, крышку и днище эллиптической формы, верхнее и нижнее дренажно-распределительные устройства, штуцера для ввода исходной воды, регенерационного раствора, промывочной воды, штуцера для вывода очищенной воды, отработанных регенерационного раствора и промывочной воды, неподвижный слой частиц ионита и воздушную подушку [Волжинский А.И., Константинов В.А. Регенерация ионитов. Теория процесса и расчета. Л.: Химия, 1990. С. 9, 10].

Недостатком известного ионообменного фильтра является то, что в нем невозможно проводить процесс противоточной регенерации ионитов с плотностью меньшей, чем плотность очищаемой воды, например, ионитов на основе целлюлозы (модифицированных древесных опилок, хлопковой целлюлозы и др.), поскольку на стадии очистки воды, движущейся сверху вниз, частицы ионита не образуют в нижней части аппарата плотный неподвижный слой, а всплывают вверх аппарата, а также в аппарате невозможно проводить процесс взрыхляющей отмывки ионита от взвеси, поскольку аппарат практически полностью заполнен ионитом, что затрудняет процесс псевдоожижения частиц.

Указанный результат достигается тем, что в ионообменном фильтре, содержащем цилиндрический корпус, эллиптические крышку и днище, верхнее и нижнее дренажно-распределительные устройства, штуцера для ввода исходной воды, регенерационного раствора, промывочной воды, штуцера для отвода очищенной воды, отработанных регенерационного раствора и промывочной воды, неподвижный слой частиц ионита и воздушную подушку, согласно изобретению

нижнее дренажно-распределительное устройство установлено вертикально в стенке корпуса ионообменного фильтра и закрыто снаружи карманом со штуцерами, в нижней части ионообменного фильтра установлена решетка, под которой находится эластичная пленка для создания воздушной подушки в нижней части ионообменного фильтра, внутри ионообменного фильтра расположены слой частиц ионита с плотностью меньшей, чем плотность очищаемой воды, и слой частиц инертного материала с плотностью большей, чем плотность очищаемой воды, причем для стадий очистки воды, регенерации и отмывки расположены сверху вниз по высоте ионообменного фильтра неподвижный слой частиц ионита, слой частиц инертного материала и воздушная подушка, для стадии прекращения подачи воды в ионообменный фильтр расположены сверху вниз по высоте фильтра слой частиц ионита, свободный объем и слой частиц инертного материала, для стадии взрыхления расположены сверху вниз по высоте фильтра слой псевдоожиженного ионита и слой частиц инертного материала.

Технический результат достигается для стадий очистки воды, регенерации и отмывки за счет удержания слоя частиц ионита в неподвижном состоянии между верхним дренажно-распределительным устройством и слоем частиц инертного материала, прижатого к слою частиц ионита с помощью воздушной подушки, и достигается для стадии взрыхления за счет перемешивания ионита в псевдоожиженном слое, расположенном между верхним дренажно-распределительным устройством и слоем частиц инертного материала, который опустился в нижнюю часть аппарат под собственным весом вследствие сдувания воздушной подушки и прижатия эластичной пленки к днищу ионообменного фильтра.

На фиг. 1 изображен ионообменный фильтр для стадий очистки воды, регенерации и промывки, на фиг. 2 – ионообменный фильтр для стадии прекращения подачи воды в фильтр, на фиг. 3 – ионообменный фильтр для стадии взрыхления.

Ионообменный фильтр содержит цилиндрический корпус 1, эллиптические крышку 2 и днище 3, решетку 4, нижнее 5 и верхнее 6 дренажно-распределительные устройства. Под решеткой 4 прикреплена к корпусу ионообменного фильтра 1 эластичная пленка 7. На стенке корпуса ионообменного фильтра 1 установлен карман 8 со штуцерами 9 и 10 для ввода исходной воды, вывода отработанных регенерационного раствора, промывочной воды и воды для взрыхления ионита. На крышке 2 расположен штуцер 11 для вывода из ионообменного фильтра очищенной воды, ввода регенерационного раствора, промывочной воды и воды для взрыхления ионита. На днище 3 расположен штуцер 12 для ввода и вывода воздуха. Для стадий очистки воды, регенерации и отмывки расположены сверху вниз по высоте ионообменного фильтра неподвижный слой частиц ионита 13, слой частиц инертного материала 14 и воздушная подушка 15 (фиг. 1). Для стадии прекращения подачи воды в ионообменный фильтр расположены сверху вниз по высоте аппарата слой частиц ионита 13, свободный объем 16 и слой частиц инертного материала 14 (фиг. 2). Для стадии взрыхления под верхним дренажно-распределительным устройством расположен слой псевдоожиженного ионита 17, под которым расположен слой частиц инертного материала 14 (фиг. 3).

Ионообменный фильтр работает следующим образом.

Перед началом работы в ионообменный фильтр помещают ионит, инертный материал и заполняют фильтр водой. Ионит всплывает вверх фильтра, поскольку он легче воды, а инертный материал опускается под собственным весом вниз фильтра. В штуцер 12, расположенный на днище 3, подают воздух, который надувает воздушную подушку 15, образованную стенкой днища 3 и эластичной пленкой 7. Частицы инертного материала свободно проходят вверх через решетку 4. Решетка 4 препятствует чрезмерному раздуванию воздушной подушки 15 и способствует равномерному давлению воздушной подушки 15 на слой частиц инертного материала 14. Слой частиц инертного материала 14 прижимает слой частиц ионита 13 к верхнему дренажно-распределительному устройству 6. Исходная вода подается через штуцера 9 и 10, проходит через нижнее дренажно-распределительное устройство 5, слои частиц инертного материала 14 и ионита 13, где очищается от ионов целевого компонента, а затем вода проходит через верхнее дренажно-распределительное устройство 6 и выводится из ионообменного фильтра через штуцер 11. После насыщения ионита целевым компонентом проводят регенерацию ионита. Регенерационный раствор подается в ионообменный фильтр через штуцер 11, проходит через верхнее дренажно-распределительное устройство 6, слои частиц ионита 13 и инертного материала 14, нижнее дренажно-распределительное устройство 5 и удаляется из ионообменного фильтра через штуцера 9 и 10. После восстановления обменной емкости ионита проводят его отмывку от остатков регенерационного раствора. Промывочная вода подается в ионообменный фильтр через штуцер 11, проходит через верхнее дренажно-распределительное устройство 6, слои частиц ионита 13 и инертного материала 14, нижнее дренажно-распределительное устройство 5 и удаляется из ионообменного фильтра через штуцера 9 и 10. Затем проводят стадию взрыхления. Для этого из воздушной подушки 15 через штуцер 12 удаляют воздух. Воздушная подушка 15 сдувается и слой частиц инертного материала 14 опускается в нижнюю часть ионообменного фильтра под собственным весом, прижимая эластичную пленку 7 к днищу 3 фильтра. Очищенная вода для взрыхления ионита подается в ионообменный фильтр через штуцер 11, поддерживая находящийся под верхним дренажно-распределительным устройством 6 слой ионита в псевдоожиженном состоянии 17. Затем загрязненная вода проходит через слой частиц инертного материала 14, нижнее дренажно-распределительное устройство 5 и удаляется из ионообменного фильтра через штуцера 9 и 10. После стадии взрыхления цикл повторяется.

Предлагаемый ионообменный фильтр позволяет проводить процессы очистки воды, противоточной регенерации и отмывки ионита в плотном слое частиц ионита с плотностью меньшей, чем плотность очищаемой воды, за счет удержания слоя частиц ионита в неподвижном состоянии между верхним дренажно-распределительным устройством и слоем частиц инертного материала, прижатого к слою ионита воздушной подушкой, а также проводить процесс взрыхления ионита за счет перемешивания ионита в псевдоожиженном слое, расположенным между верхним дренажно-распределительным устройством и слоем частиц инертного материала, который опустился под собственным весом в нижнюю часть ионообменного фильтра вследствие сдувания воздушной подушки.

Похожие патенты RU2768619C1

название год авторы номер документа
ИОНООБМЕННЫЙ АППАРАТ 2022
  • Натареев Сергей Валентинович
  • Рябиков Алексей Александрович
  • Снигирев Михаил Юрьевич
  • Сырбу Светлана Александровна
RU2806755C1
ИОНООБМЕННЫЙ АППАРАТ 2022
  • Натареев Сергей Валентинович
  • Лапшин Николай Александрович
  • Рябиков Алексей Александрович
  • Семёнов Андрей Юрьевич
  • Краснов Александр Алексеевич
RU2789979C1
ИОНООБМЕННЫЙ АППАРАТ ДЛЯ ОЧИСТКИ ВОДЫ 2021
  • Натареев Сергей Валентинович
  • Лапшин Николай Александрович
  • Шилов Никита Михайлович
  • Никифорова Татьяна Евгеньевна
RU2764009C1
ИОНООБМЕННАЯ УСТАНОВКА 2021
  • Натареев Сергей Валентинович
  • Соколов Алексей Андреевич
RU2768624C1
ИОНООБМЕННАЯ УСТАНОВКА 2023
  • Натареев Сергей Валентинович
  • Рябиков Алексей Александрович
  • Никифорова Татьяна Евгеньевна
RU2806528C1
ИОНООБМЕННАЯ УСТАНОВКА 2023
  • Натареев Сергей Валентинович
  • Рябиков Алексей Александрович
  • Ялышев Фаиль Наилевич
  • Сырбу Светлана Александровна
RU2810020C1
ИОНООБМЕННАЯ УСТАНОВКА 2023
  • Натареев Сергей Валентинович
  • Рябиков Алексей Александрович
RU2806373C1
ИОНООБМЕННЫЙ ФИЛЬТР 2002
  • Амосова Э.Г.
  • Долгополов П.И.
  • Рудаков Р.Ю.
  • Фирсов Б.Н.
  • Остроухов Л.Л.
RU2205691C1
СПОСОБ РЕГЕНЕРАЦИ ИОНООБМЕННЫХ СМОЛ 2013
  • Громов Сергей Львович
  • Громова Марина Яковлевна
RU2545279C1
СПОСОБ ОЧИСТКИ ВОДЫ ПУТЕМ ИОННОГО ОБМЕНА С ПРОТИВОТОЧНОЙ РЕГЕНЕРАЦИЕЙ ИОНИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Балаев И.С.
RU2121873C1

Иллюстрации к изобретению RU 2 768 619 C1

Реферат патента 2022 года ИОНООБМЕННЫЙ ФИЛЬТР

Изобретение относится к оборудованию для проведения процессов ионного обмена. Ионообменный фильтр в нижней части содержит решетку, под которой находится эластичная пленка для создания воздушной подушки. Внутри ионообменного фильтра расположены слой частиц ионита с плотностью меньшей, чем плотность очищаемой воды, и слой частиц инертного материала с плотностью большей, чем плотность очищаемой воды. Днище ионообменного фильтра снабжено штуцером для ввода и вывода воздуха с целью надувания и сдувания воздушной подушки для обеспечения следующих состояний слоев фильтра в процессе работы: для стадий очистки воды, регенерации и отмывки расположены сверху вниз по высоте ионообменного фильтра неподвижный слой частиц ионита, слой частиц инертного материала и воздушная подушка, для стадии прекращения подачи воды расположены сверху вниз по высоте ионообменного фильтра слой частиц ионита, свободный объем и слой частиц инертного материала, для стадии взрыхления расположены сверху вниз по высоте ионообменного фильтра слой псевдоожиженного ионита и слой частиц инертного материала. Техническим результатом является возможность проведения ионообменной очистки воды с помощью ионообменных материалов с плотностью меньшей, чем плотность очищаемой воды. 3 ил.

Формула изобретения RU 2 768 619 C1

Ионообменный фильтр, содержащий цилиндрический корпус, эллиптические крышку и днище, верхнее и нижнее дренажно-распределительные устройства, штуцера для ввода исходной воды, регенерационного раствора, промывочной воды, штуцера для отвода очищенной воды, отработанного регенерационного раствора, отработанной промывочной воды, неподвижный слой частиц ионита и воздушную подушку, отличающийся тем, что нижнее дренажно-распределительное устройство установлено вертикально в стенке корпуса ионообменного фильтра и закрыто снаружи карманом со штуцерами, в нижней части ионообменного фильтра установлена решетка, под которой находится эластичная пленка для создания воздушной подушки в нижней части ионообменного фильтра, внутри ионообменного фильтра расположены слой частиц ионита с плотностью меньшей, чем плотность очищаемой воды, и слой частиц инертного материала с плотностью большей, чем плотность очищаемой воды, днище ионообменного фильтра снабжено штуцером для ввода и вывода воздуха с целью надувания и сдувания воздушной подушки для обеспечения следующих состояний слоев фильтра в процессе работы: для стадий очистки воды, регенерации и отмывки расположены сверху вниз по высоте ионообменного фильтра неподвижный слой частиц ионита, слой частиц инертного материала и воздушная подушка, для стадии прекращения подачи воды расположены сверху вниз по высоте ионообменного фильтра слой частиц ионита, свободный объем и слой частиц инертного материала, для стадии взрыхления расположены сверху вниз по высоте ионообменного фильтра слой псевдоожиженного ионита и слой частиц инертного материала.

Документы, цитированные в отчете о поиске Патент 2022 года RU2768619C1

ВОЛЖИНСКИЙ А.И., КОНСТАНТИНОВ В.А
РЕГЕНЕРАЦИЯ ИОНИТОВ
ТЕОРИЯ ПРОЦЕССА И РАСЧЕТА
Л.: ХИМИЯ, 1990
РЯБЧИКОВ Б.Е
СОВРЕМЕННЫЕ МЕТОДЫ ПОДГОТОВКИ ВОДЫ ДЛЯ ПРОМЫШЛЕННОГО И БЫТОВОГО ИСПОЛЬЗОВАНИЯ
М.: ДЕЛИ ПРИНТ, 2004
Способ регенерации ионитного фильтра 1985
  • Цырульников Д.Л.
  • Юрчевский Е.Б.
  • Яковлев А.В.
  • Алексеева Т.В.
  • Остроухов Л.Л.
SU1372711A1
SU 1522527 A1, 20.01.1996
СПОСОБ ОЧИСТКИ ВОДЫ ОТ РАСТВОРЕННЫХ И НЕРАСТВОРЕННЫХ ПРИМЕСЕЙ 2002
  • Балаев И.С.
  • Демина Н.С.
RU2206520C1
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ 2017
  • Натареев Сергей Валентинович
  • Козлов Владимир Александрович
  • Никифорова Татьяна Евгеньевна
  • Быков Александр Андреевич
  • Захаров Дмитрий Евгеньевич
RU2657506C1
ПРОГРАММНОЕ ВРЕМЕННОЕ УСТРОЙСТВО 1992
  • Булыгин В.Г.
RU2006895C1

RU 2 768 619 C1

Авторы

Натареев Сергей Валентинович

Первойкин Василий Николаевич

Никифорова Татьяна Евгеньевна

Даты

2022-03-24Публикация

2021-04-20Подача