Настоящее изобретение относится к системам, генерирующим аэрозоль, которые содержат нагреватель в сборе, который подходит для испарения жидкости. В частности, изобретение относится к удерживаемым рукой системам, генерирующим аэрозоль, таким как электрически управляемые курительные системы.
Электрически управляемые курительные системы, которые испаряют жидкость посредством нагрева для образования аэрозоля, как правило, содержат катушку из проволоки, которая обернута вокруг капиллярного материала, который удерживает жидкость. Электрический ток, проходящий через проволоку, вызывает резистивный нагрев проволоки, посредством чего испаряется жидкость в капиллярном материале. Капиллярный материал, как правило, удерживается внутри канала для потока воздуха, так что воздух втягивается через фитиль и вовлекает пар. Пар впоследствии охлаждается для образования аэрозоля.
Данный тип системы является эффективным при создании аэрозоля, но низкозатратное и массовое производство является затруднительным. К тому же, фитиль и катушка в сборе, вместе с соответствующими электрическими соединениями, могут быть хрупкими и сложными в обращении.
ЕР 2468116 раскрывает генерирующую аэрозоль систему, содержащую часть для хранения жидкости в форме картрижда, содержащего жидкость, капилярный фитиль и нагреватель. Один конец капилярного фитиля проходит в картридж, а другой его конец окружен нагреватлем. При использовании жидкость в конце капилярного фитиля испраяется посредстом нагревателя.
Необходимо предоставить нагреватель в сборе, подходящий для системы, генерирующей аэрозоль, такой как удерживаемая рукой электрически управляемая курительная система, который является недорогим для производства и надежным. Дополнительно необходимо предоставить нагреватель в сборе, который эффективнее предыдущих нагревателей в сборе в системах, генерирующих аэрозоль.
В одном аспекте предоставлена система, генерирующая аэрозоль, содержащая проницаемый для жидкости электрический нагреватель в сборе, при этом нагреватель в сборе содержит: электрически изолирующий субстрат, отверстие, образованное в электрически изолирующем субстрате; и элемент нагревателя, прикрепленный к электрически изолирующему субстрату, при этом элемент нагревателя заполняет отверстие и содержит множество электрически проводящих нитей, соединенных с первой и второй частями электрически проводящего контакта, первая и вторая части электрически проводящего контакта расположены на противоположных сторонах отверстия относительно друг друга, при этом первая и вторая части электрически проводящего контакта выполнены с возможностью обеспечения возможности контакта с внешним источником питания.
Множество электрически проводящих нитей может образовывать сетку или матрицу нитей или может содержать тканый или нетканый материал.
Преимущественно, элемент нагревателя имеет первую внешнюю поверхность, которая прикреплена к электрически изолирующему субстрату, и первая и вторая части электрически проводящего контакта выполнены с возможностью обеспечения возможности контакта с внешним источником питания на второй внешней поверхности элемента нагревателя, противоположной первой внешней поверхности.
Система может дополнительно содержать часть для хранения жидкости, содержащую корпус, содержащий жидкий субстрат, образующий аэрозоль, при этом нагреватель в сборе прикреплен к корпусу части для хранения жидкости. Корпус предпочтительно является жестким корпусом и непроницаемым для жидкости. В данном контексте «жесткий корпус» означает самонесущий корпус. Жесткий корпус части для хранения жидкости предпочтительно предоставляет механическую опору для нагревателя в сборе.
Часть для хранения жидкости может содержать капиллярный материал, выполненный с возможностью передачи жидкого субстрата, образующего аэрозоль, на нагреватель в сборе.
Обеспечение нагревателя в сборе данного типа в системе, генерирующей аэрозоль, имеет несколько преимуществ над традиционной компоновкой фитиля и катушки. Элемент нагревателя, содержащий сетку или матрицу нитей, обеспечивает большую площадь контакта нагревателя с испаряющейся жидкостью. Нагреватель в сборе может быть недорого произведен с использованием легкодоступных материалов и с использованием технологий массового производства. Нагреватель в сборе является надежным, что позволяет его обработку и прикрепление к другим частям системы, генерирующей аэрозоль, во время изготовления и, в частности, образование части съемного картриджа. Обеспечение частей электрически проводящего контакта, образующих часть элемента нагревателя, обеспечивает надежное и простое соединение нагревателя в сборе с источником питания.
Электрически проводящие нити могут быть по существу плоскими. В данном контексте «по существу плоский» означает образованный в одной плоскости и не обернутый вокруг или иным образом приспособленный для соответствия изогнутой или иной неплоской форме. Плоский нагреватель в сборе может быть легко обработан во время изготовления и предоставляет надежную конструкцию.
Электрически проводящие нити могут образовывать промежутки между собой, и данные промежутки могут иметь ширину от 10 мкм до 100 мкм. Предпочтительно, нити создают капиллярный эффект в промежутках, так что при использовании жидкость, подлежащая испарению, втягивается в промежутки, увеличивая площадь контакта между нагревателем в сборе и жидкостью.
Электрически проводящие нити могут образовывать сетку размером от 160 до 600 меш по стандарту США (+/- 10%) (т.е. от 160 до 600 нитей на дюйм (+/- 10%)). Ширина промежутков предпочтительно составляет от 75 мкм до 25 мкм. Процентное соотношение открытой площади сетки, которое является отношением площади промежутков к общей площади сетки, предпочтительно составляет от 25 до 56%. Сетка может быть образована с использованием различных типов плетеных или решетчатых структур. В качестве альтернативы, электрически проводящие нити состоят из матрицы нитей, расположенных параллельно друг другу.
Сетка, матрица или материал из электрически проводящих нитей также может характеризоваться своей способностью удерживать жидкость, как хорошо известно в данной области техники.
Электрически проводящие нити могут иметь диаметр от 8 мкм до 100 мкм, предпочтительно от 8 мкм до 50 мкм и более предпочтительно от 8 мкм до 39 мкм.
Площадь сетки, матрицы или материала из электрически проводящих нитей может быть небольшой, предпочтительно менее или равной 25 мм2, позволяя встраивать его в удерживаемую рукой систему. Сетка, матрица или материал из электрически проводящих нитей может, например, иметь прямоугольную форму и размеры, равные 5 мм на 2 мм. Предпочтительно, сетка или матрица электрически проводящих нитей занимает площадь от 10% до 50% площади нагревателя в сборе. Более предпочтительно, сетка или матрица электрически проводящих нитей занимает площадь от 15 до 25% площади нагревателя в сборе.
Электрически проводящие нити могут содержать любой подходящий электрически проводящий материал. Подходящие материалы включают, помимо всего прочего: полупроводники, такие как легированная керамика, электрически «проводящая» керамика (такая как, например, дисилицид молибдена), углерод, графит, металлы, сплавы металлов и композиционные материалы, изготовленные из керамического материала и металлического материала. Такие композиционные материалы могут содержать легированную или нелегированную керамику. Примеры подходящей легированной керамики включают легированные карбиды кремния. Примеры подходящих металлов включают титан, цирконий, тантал и металлы из платиновой группы. Примеры подходящих сплавов металлов включают нержавеющую сталь, константан, никель-, кобальт-, хром-, алюминий-, титан-, цирконий-, гафний-, ниобий-, молибден-, тантал-, вольфрам-, олово-, галлий-, марганец- и железосодержащие сплавы, а также суперсплавы на основе никеля, железа, кобальта, нержавеющей стали, Timetal®, сплавы на основе железа и алюминия и сплавы на основе железа, марганца и алюминия. Timetal® представляет собой зарегистрированную торговую марку компании Titanium Metals Corporation. Нити могут быть покрыты одним или несколькими изоляторами. Предпочтительными материалами для электрически проводящих нитей являются нержавеющая сталь марок 304, 316, 304L и 316L, а также графит.
Электрическое сопротивление сетки, матрицы или материала из электрически проводящих нитей элемента нагревателя предпочтительно составляет от 0,3 до 4 Ом. Более предпочтительно, электрическое сопротивление сетки, матрицы или материала из электрически проводящих нитей составляет от 0,5 до 3 Ом, а еще более предпочтительно — приблизительно 1 Ом. Электрическое сопротивление сетки, матрицы или материала из электрически проводящих нитей предпочтительно по меньшей мере на порядок и более предпочтительно по меньшей мере на два порядка больше, чем электрическое сопротивление частей контакта. Это обеспечивает локализацию тепла, сгенерированного посредством прохождения тока через элемент нагревателя, на сетке или матрице электрически проводящих нитей. Низкое общее сопротивление элемента нагревателя является преимущественным, если система получает питание от батареи. Минимизация паразитных потерь между электрическими контактами и сеткой или нитями также является необходимой для минимизации паразитных потерь мощности. Система с низким сопротивлением и высоким током обеспечивает возможность подачи высокой мощности на элемент нагревателя. Это обеспечивает быстрый нагрев элементом нагревателя электрически проводящих нитей до необходимой температуры.
Первая и вторая части электрически проводящего контакта могут быть непосредственно прикреплены к электрически проводящим нитям. Части контакта могут быть расположены между электрически проводящими нитями и электрически изолирующим субстратом. Например, части контакта могут быть образованы из медной фольги, которая нанесена на изолирующий субстрат. Части контакта также могут быть более просто связаны с нитями, чем изолирующий субстрат.
В качестве альтернативы, первая и вторая части электрически проводящего контакта могут являться одним целым с электрически проводящими нитями. Например, элемент нагревателя может быть образован посредством травления проводящего листа для обеспечения множества нитей между двумя частями контакта.
Нагреватель в сборе может содержать по меньшей мере одну нить, выполненную из первого материала, и по меньшей мере одну нить, выполненную из второго материала, отличного от первого материала. Это может быть выгодно по электрическим или механическим причинам. Например, одна или несколько нитей могут быть образованы из материала, сопротивление которого сильно изменяется в зависимости от температуры, такого как сплав железа и алюминия. Это обеспечивает использование величины сопротивления нитей для определения температуры или изменений температуры. Это может быть использовано в системе обнаружения затяжки и для управления температурой нагревателя для ее поддержания в пределах необходимого температурного диапазона.
Электрически изолирующий субстрат может содержать любой подходящий материал, и предпочтительно, чтобы этот материал был способен выдерживать высокие температуры (свыше 300oC) и резкие изменения температуры. Примером подходящего материала является полиимидная пленка, такая как Kapton®.
Субстрат, образующий аэрозоль, представляет собой субстрат, способный высвобождать летучие соединения, которые могут образовывать аэрозоль. Летучие соединения могут быть высвобождены путем нагревания субстрата, образующего аэрозоль.
Субстрат, образующий аэрозоль, может содержать материал растительного происхождения. Субстрат, образующий аэрозоль, может содержать табак. Субстрат, образующий аэрозоль, может содержать табакосодержащий материал, содержащий летучие вкусоароматические соединения табака, которые высвобождаются из субстрата, образующего аэрозоль, при нагревании. Субстрат, образующий аэрозоль, в качестве альтернативы может содержать материал, не содержащий табака. Субстрат, образующий аэрозоль, может содержать гомогенизированный материал растительного происхождения. Субстрат, образующий аэрозоль, может содержать гомогенизированный табачный материал. Субстрат, образующий аэрозоль, может содержать по меньшей мере одно вещество для образования аэрозоля. Вещество для образования аэрозоля представляет собой любое подходящее известное соединение или смесь соединений, которая при использовании способствует образованию плотного и устойчивого аэрозоля и при рабочей температуре системы по существу устойчива к термической деградации. Подходящие вещества для образования аэрозоля хорошо известны из уровня техники и включают, помимо всего прочего: многоатомные спирты, такие как триэтиленгликоль, 1,3-бутандиол и глицерин; сложные эфиры многоатомных спиртов, такие как глицерол моно-, ди- или триацетат; и алифатические сложные эфиры моно-, ди- или поликарбоновых кислот, такие как диметилдодекандиоат и диметилтетрадекандиоат. Предпочтительными веществами для образования аэрозоля являются многоатомные спирты или их смеси, такие как триэтиленгликоль, 1,3-бутандиол и, наиболее предпочтительно, глицерин. Субстрат, образующий аэрозоль, может содержать другие добавки и ингредиенты, такие как ароматизаторы.
Капиллярный материал может иметь волокнистую или губчатую структуру. Капиллярный материал предпочтительно содержит пучок капилляров. Например, капиллярный материал может содержать множество волокон или нитей или других тонких трубок с каналами. Волокна или нити могут быть, в целом, выровнены для передачи жидкости на нагреватель. В качестве альтернативы, капиллярный материал может содержать губкообразный или пенообразный материал. Структура капиллярного материала образует множество небольших каналов или трубок, через которые может транспортироваться жидкость за счет капиллярного действия. Капиллярный материал может содержать любой подходящий материал или сочетание материалов. Примеры подходящих материалов представляют собой губчатый или вспененный материал, материалы на основе керамики или графита в виде волокон или спекшихся порошков, вспененный металлический или пластиковый материал, волокнистый материал, например, выполненный из крученых или экструдированных волокон, таких как ацетатцеллюлозные, полиэфирные, или связанные полиолефиновые, полиэтиленовые, териленовые или полипропиленовые волокна, нейлоновые волокна или керамика. Капиллярный материал может иметь любые подходящие капиллярность и пористость с тем, чтобы использовать его с жидкостями с разными физическими свойствами. Жидкость имеет физические свойства, включая, помимо всего прочего, вязкость, поверхностное натяжение, плотность, теплопроводность, температуру кипения и давление пара, которые обеспечивают возможность транспортировки жидкости через капиллярное устройство за счет капиллярного действия.
Капиллярный материал может находиться в контакте с электрически проводящими нитями. Капиллярный материал может проходить внутри промежутков между нитями. Нагреватель в сборе может втягивать жидкий субстрат, образующий аэрозоль, внутрь промежутков за счет капиллярного действия. Капиллярный материал может находиться в контакте с электрически проводящими нитями по существу на всем протяжении отверстия.
Корпус может содержать два или более различных капиллярных материалов, при этом первый капиллярный материал, находящийся в контакте с элементом нагревателя, имеет более высокую температуру термического разложения, а второй капиллярный материал, находящийся в контакте с первым капиллярным материалом, но не находящийся в контакте с элементом нагревателя, имеет более низкую температуру термического разложения. Первый капиллярный материал эффективно действует как разделитель, отделяющий элемент нагревателя от второго капиллярного материала, так что второй капиллярный материал не подвергается воздействию температур, превышающих его температуру термического разложения. В данном контексте «температура термического разложения» означает температуру, при которой материал начинает разлагаться и терять массу в результате образования газообразных продуктов. Второй капиллярный материал может преимущественно занимать больший объем, чем первый капиллярный материал, и может удерживать большее количество субстрата, образующего аэрозоль, чем первый капиллярный материал. Второй капиллярный материал может иметь лучшие капиллярные свойства, чем первый капиллярный материал. Второй капиллярный материал может являться менее дорогостоящим или иметь более высокую заполняемость, чем первый капиллярный материал. Второй капиллярный материал может представлять собой полипропилен.
Первый капиллярный материал может отделять нагреватель в сборе от второго капиллярного материала расстоянием по меньшей мере 1,5 мм и предпочтительно от 1,5 до 2 мм с целью обеспечения достаточного снижения температуры за первым капиллярным материалом.
Часть для хранения жидкости может быть расположена на первой стороне электрически проводящих нитей, а канал для потока воздуха расположен на противоположной стороне электрически проводящих нитей относительно части для хранения жидкости, так что поток воздуха после электрически проводящих нитей вовлекает испаренный жидкий субстрат, образующий аэрозоль.
Система может дополнительно включать электрическую схему, соединенную с элементом нагревателя и электрическим источником питания; при этом электрическая схема выполнена с возможностью контроля электрического сопротивления элемента нагревателя или одной или нескольких нитей элемента нагревателя и с возможностью управления подачей питания на элемент нагревателя от источника питания в зависимости от электрического сопротивления элемента нагревателя или, в частности, электрического сопротивления одной или нескольких нитей.
Электрическая схема может содержать микропроцессор, который может представлять собой программируемый микропроцессор, микроконтроллер или специализированную интегральную микросхему (ASIC) или другую электронную схему, способную осуществлять управление. Электрическая схема может содержать дополнительные электронные компоненты. Электрическая схема может быть выполнена с возможностью регулирования подачи питания на нагреватель. Питание может подаваться на элемент нагревателя непрерывно после активации системы или может подаваться с перерывами, например, от затяжки к затяжке. Питание может подаваться на элемент нагревателя в виде импульсов электрического тока.
Система преимущественно содержит источник питания, как правило, батарею, такую как литий-железо-фосфатная батарея, внутри главной части корпуса. В качестве альтернативы, источник питания может представлять собой устройство накопления заряда другого типа, такое как конденсатор. Источник питания может требовать перезарядки и может обладать емкостью, позволяющей накапливать достаточно энергии для одного или нескольких сеансов курения. Например, источник питания может иметь достаточную емкость для того, чтобы позволить непрерывно генерировать аэрозоль в течение приблизительно шести минут, что соответствует типичному времени выкуривания традиционной сигареты, или в течение периода, кратного шести минутам. В другом примере источник питания может иметь достаточную емкость для того, чтобы обеспечить возможность осуществления заданного количества затяжек или отдельных активаций нагревателя.
Система может включать главный блок и картридж, который соединен с возможностью съема с главным блоком, при этом часть для хранения жидкости и нагреватель в сборе обеспечены в картридже и главный блок содержит источник питания. В данном контексте картридж, «соединенный с возможностью съема» с устройством, означает, что картридж и устройство могут быть соединены и отсоединены друг от друга без значительного повреждения как устройства, так и картриджа.
Система может представлять собой электрически управляемую курительную систему. Система может представлять собой удерживаемую рукой систему, генерирующую аэрозоль. Система, генерирующая аэрозоль, может иметь размер, сопоставимый с размером традиционной сигары или сигареты. Курительная система может иметь общую длину от приблизительно 30 мм до приблизительно 150 мм. Курительная система может иметь внешний диаметр от приблизительно 5 мм до приблизительно 30 мм.
Во втором аспекте предоставлен проницаемый для жидкости электрический нагреватель в сборе, содержащий: электрически изолирующий субстрат, отверстие, образованное в электрически изолирующем субстрате; и элемент нагревателя заполняет отверстие и имеет первую внешнюю поверхность, прикрепленную к электрически изолирующему субстрату, и элемент нагревателя содержит несколько электрически проводящих нитей, соединенных с первой и второй частями электрически проводящего контакта, первая и вторая части электрически проводящего контакта расположены на противоположных сторонах отверстия относительно друг друга, при этом первая и вторая части электрически проводящего контакта выполнены с возможностью обеспечения возможности контакта с внешним источником питания.
В третьем аспекте предоставлен способ изготовления проницаемого для жидкости электрического нагревателя в сборе, подходящего для применения в системе, генерирующей аэрозоль, включающий:
обеспечение электрически изолирующего субстрата;
образование одного или нескольких отверстий в субстрате;
обеспечение элемента нагревателя на субстрате, заполняющего одно или несколько отверстий, при этом элемент нагревателя содержит множество электрически проводящих нитей и по меньшей мере две части электрически проводящего контакта на противоположных сторонах одного или нескольких отверстий относительно друг друга.
В четвертом аспекте предоставлен способ изготовления множества проницаемых для жидкости электрических нагревателей в сборе, подходящих для применения в системе, генерирующей аэрозоль, включающий:
обеспечение электрически изолирующего субстрата;
образование множества отверстий в субстрате;
обеспечение множества частей электрически проводящего контакта на субстрате на противоположных сторонах каждого из множества отверстий относительно друг друга;
обеспечение множества электрически проводящих нитей на субстрате, проходящем между частями электрически проводящего контакта поперек каждого из множества отверстий, для обеспечения матрицы нагревателей в сборе;
выделение множества отдельных нагревателей в сборе из матрицы нагревателей в сборе, при этом каждый нагреватель в сборе включает одно из отверстий.
Электрически изолирующий субстрат может являться гибким листовым материалом. Части электрически проводящего контакта и электрически проводящие нити могут быть образованы в качестве одного целого.
Признаки, описанные в отношении одного аспекта, могут быть в равной степени применены и к другим аспектам изобретения. В частности, признаки, описанные в отношении нагревателя в сборе в первом аспекте изобретения, могут быть в равной степени применены и к нагревателю в сборе второго аспекта изобретения.
В данном контексте «электрически проводящий» означает образованный из материала, имеющего удельное сопротивление 1x10-4 Ом·м или меньше. В данном контексте «электрически изолирующий» означает образованный из материала, имеющего удельное сопротивление 1x104 Ом·м или больше. Варианты осуществления изобретения будут далее описаны исключительно в качестве примера со ссылкой на сопроводительные графические материалы, на которых:
на фиг. 1a-1d показаны схематические иллюстрации системы, включающей картридж, в соответствии с вариантом осуществления изобретения;
на фиг. 2 показана схематическая иллюстрация механизма фиксации для мундштучной части системы, показанной на фиг. 1;
на фиг. 3 показан покомпонентный вид картриджа, показанного на фиг. 1a-1d;
на фиг. 4 показан покомпонентный вид альтернативного картриджа для применения в системе, как показано на фиг. 1a-1d;
на фиг. 5a показан вид снизу в перспективе картриджа, показанного на фиг. 2;
на фиг. 5b показан вид сверху в перспективе картриджа, показанного на фиг. 2, с удаленным покрытием;
на фиг. 6 показан подробный вид нагревателя в сборе, использующегося в картридже, показанном на фиг. 2;
на фиг. 7 показан подробный вид альтернативного нагревателя в сборе, который может быть использован в картридже, показанном на фиг. 2;
на фиг. 8 показан подробный вид дополнительного альтернативного нагревателя в сборе, который может быть использован в картридже, показанном на фиг. 2;
на фиг. 9 показан подробный вид еще одного дополнительного альтернативного нагревателя в сборе, который может быть использован в картридже, показанном на фиг. 2;
на фиг. 10 показан подробный вид альтернативного механизма для осуществления электрического контакта между устройством и нагревателем в сборе;
на фиг. 11a-11b проиллюстрированы некоторые формы корпуса картриджа, которые могут быть использованы для обеспечения правильного выравнивания картриджа в устройстве;
на фиг. 12a показан подробный вид нитей нагревателя, на котором показан мениск жидкого субстрата, образующего аэрозоль, между нитями;
на фиг. 12b показан подробный вид нитей нагревателя, на котором показан мениск жидкого субстрата, образующего аэрозоль, между нитями и капиллярный материал, проходящий между нитями;
на фиг. 13a, 13b и 13c проиллюстрированы альтернативные способы изготовления нагревателя в сборе в соответствии с изобретением; и
на фиг. 14 проиллюстрирована альтернативная конструкция части для хранения жидкости, включающей нагреватель в сборе.
На фиг. 15a и 15b проиллюстрированы дополнительные альтернативные варианты осуществления части для хранения жидкости, включающей нагреватель в сборе.
На фиг. 16 проиллюстрирован альтернативный вариант осуществления ориентации потока воздуха и картриджа относительно устройства, генерирующего аэрозоль.
На фиг. 1a-1d показаны схематические иллюстрации системы, генерирующей аэрозоль, включающей картридж, в соответствии с вариантом осуществления изобретения. На фиг. 1a показан схематический вид устройства 10, генерирующего аэрозоль, и отдельного картриджа 20, которые вместе образуют систему, генерирующую аэрозоль. В данном примере система, генерирующая аэрозоль, является электрически управляемой курительной системой.
Картридж 20 содержит субстрат, образующий аэрозоль, и выполнен с возможностью вмещения в полость 18 внутри устройства. Картридж 20 должен быть выполнен с возможностью замены пользователем, если субстрат, образующий аэрозоль, обеспеченный в картридже, исчерпан. На фиг. 1a показан картридж 20 сразу перед вставкой в устройство, при этом стрелка 1, показанная на фиг. 1a, указывает на направление вставки картриджа.
Устройство 10, генерирующее аэрозоль, является портативным и имеет размер, сопоставимый с размером традиционной сигары или сигареты. Устройство 10 содержит главную часть 11 и мундштучную часть 12. Главная часть 11 содержит батарею 14, такую как литий-железо-фосфатная батарея, управляющую электронику 16 и полость 18. Мундштучная часть 12 соединена с главной частью 11 посредством шарнирного соединения 21 и может перемещаться между открытым положением, как показано на фиг. 1, и закрытым положением, как показано на фиг. 1d. Мундштучная часть 12 расположена в открытом положении для обеспечения вставки и удаления картриджей 20 и расположена в закрытом положении, когда система должна быть использована для генерирования аэрозоля, как будет описано. Мундштучная часть содержит множество впускных отверстий 13 для воздуха и выпускное отверстие 15. При использовании, пользователь делает затяжку со стороны выпускного отверстия для втягивания воздуха сквозь впускные отверстия 13 для воздуха через мундштучную часть в выпускное отверстие 15 и впоследствии в рот или легкие пользователя. Внутренние перегородки 17 обеспечены для того, чтобы вынуждать воздух протекать через мундштучную часть 12 мимо картриджа, как будет описано.
Полость 18имеет круглое поперечное сечение и такой размер, чтобы вмещать корпус 24 картриджа 20. Электрические соединители 19 обеспечены по сторонам полости 18 для обеспечения электрического соединения между управляющей электроникой 16 и батареей 14 и соответствующими электрическими контактами на картридже 20.
На фиг. 1b показана система, показанная на фиг. 1a, со вставленным в полость 18 картриджем и удаленным покрытием 26. В данном положении электрические соединители находятся напротив электрических контактов на картридже, как будет описано.
На фиг. 1c показана система, показанная на фиг. 1b, с полностью удаленным покрытием 26 и перемещенной в закрытое положение мундштучной частью 12.
На фиг. 1d показана система, показанная на фиг. 1c, с находящейся в закрытом положении мундштучной частью 12. Мундштучная часть 12 удерживается в закрытом положении механизмом фиксации, как схематически проиллюстрировано на фиг. 2. На фиг. 2 проиллюстрирована главная часть 11 и мундштучная часть 12, соединенные посредством шарнирного соединения 21. Мундштучная часть 12 содержит проходящий вовнутрь зуб 8. Когда мундштучная часть находится в закрытом положении, зуб 8 зацепляет фиксатор 6 на главной части устройства. Фиксатор 6 смещается пружиной 5 смещения для зацепления зуба 8. Кнопка 4 прикрепляется к фиксатору 6. Кнопка 4 может быть нажата пользователем в противоположность действию пружины 5 смещения для высвобождения зуба 8 из фиксатора 6, что позволяет мундштучной части перемещаться в открытое положение. Теперь специалисту в данной области техники будет очевидно, что могут быть использованы другие подходящие механизмы для удерживания мундштука в закрытом положении, такие как защелкивающееся соединение или магнитный затвор.
Мундштучная часть 12 в закрытом положении удерживает картридж в электрическом контакте с электрическими соединителями 19, так что при использовании поддерживается хорошее электрическое соединение независимо от ориентации системы. Мундштучная часть 12 может включать кольцевой эластомерный элемент, который контактирует с поверхностью картриджа и сжимается между жестким элементом корпуса мундштука и картриджем, когда мундштучная часть 12 находится в закрытом положении. Это обеспечивает поддержание хорошего электрического соединения несмотря на допуски на изготовление.
Конечно, в качестве альтернативы или дополнения могут быть использованы другие механизмы для поддержания хорошего электрического соединения между картриджем и устройством. Например, корпус 24 картриджа 20 может быть оснащен резьбой или канавкой (не проиллюстрированной), которая входит в зацепление с соответствующей канавкой или резьбой (не проиллюстрировано), образованную в стенке полости 18. Резьбовое соединение между картриджем и устройством может быть использовано для обеспечения правильного вращательного выравнивания, а также удерживания картриджа в полости и обеспечения хорошего электрического соединения. Резьбовое соединение может распространяться только на половину оборота или меньше картриджа или может распространяться на несколько оборотов. В качестве альтернативы или дополнения, электрические соединители 19 могут быть смещены для обеспечения контакта с контактами на картридже, как будет описано со ссылкой на фиг. 8.
На фиг. 3 показан покомпонентный вид картриджа 20. Картридж 20 содержит, в целом, круглый цилиндрический корпус 24, который имеет размер и форму, выбранные для вмещения в полость 18. Корпус содержит капиллярный материал 22, который пропитан жидким субстратом, образующим аэрозоль. В данном примере субстрат, образующий аэрозоль, содержит 39% по весу глицерина, 39% по весу пропиленгликоля, 20% по весу воды и ароматизаторов и 2% по весу никотина. Капиллярный материал является материалом, который активно передает жидкость от одного конца к другому, и может быть изготовлен из любого подходящего материала. В данном примере капиллярный материал образован из полиэфира.
Корпус имеет открытый конец, к которому прикрепляется нагреватель в сборе 30. Нагреватель в сборе 30 содержит субстрат 34, имеющий отверстие 35, образованное в нем, пару электрических контактов 32, прикрепленных к субстрату и отделенных друг от друга зазором 33, и множество электрически проводящих нитей 36 нагревателя, заполняющих отверстие и прикрепленных к электрическим контактам на противоположных сторонах отверстия 35.
Нагреватель в сборе 30 покрыт съемным покрытием 26. Покрытие содержит непроницаемый для жидкости лист пластмассы, который приклеен к нагревателю в сборе, но который может быть легко снят. Выступ обеспечен на стороне покрытия для обеспечения пользователю возможности взяться за покрытие при его снятии. Теперь специалисту в данной области техники будет очевидно, что несмотря на то, что приклеивание описано в качестве способа крепления непроницаемого листа пластмассы к нагревателю в сборе, могут быть использованы другие способы, известные специалистам в данной области техники, включая тепловую склейку или ультразвуковую сварку, при условии, что покрытие может быть легко удалено потребителем.
На фиг. 4 показан покомпонентный вид альтернативного приведенного в качестве примера картриджа. Картридж, показанный на фиг. 4, имеет такие же размер и форму, что и картридж, показанный на фиг. 3, и имеет такой же корпус и нагреватель в сборе. Тем не менее, капиллярный материал внутри картриджа, показанного на фиг. 4, отличается от капиллярного материала, показанного на фиг. 3. Картридж, показанный на фиг. 4, содержит два отдельных капиллярных материала 27, 28. Диск первого капиллярного материала 27 обеспечен для контакта с элементом 36, 32 нагревателя при использовании. Большая часть второго капиллярного материала 28 обеспечена на противоположной стороне первого капиллярного материала 27 относительно нагревателя в сборе. Как первый капиллярный материал, так и второй капиллярный материал удерживают жидкий субстрат, образующий аэрозоль. Первый капиллярный материал 27, который находится в контакте с элементом нагревателя, имеет более высокую температуру термического разложения (по меньшей мере 160oC или выше, такую как приблизительно 250 oC), чем второй капиллярный материал 28. Первый капиллярный материал 27 эффективно действует как разделитель, отделяющий элемент 36, 32 нагревателя от второго капиллярного материала 28, так что второй капиллярный материал не подвергается воздействию температур, превышающих его температуру термического разложения. Перепад температур в первом капиллярном материале таков, что второй капиллярный материал подвергается воздействию температур ниже его температуры теплового разложения. Второй капиллярный материал 28 может быть выбран таким образом, чтобы обладать лучшими капиллярными свойствами, чем первый капиллярный материал 27, может удерживать больше жидкости на единицу объема, чем первый капиллярный материал, и может быть дешевле первого капиллярного материала. В данном примере первый капиллярный материал представляет собой теплостойкий материал, такой как стеклопластик или материал, содержащий стеклопластик, и второй капиллярный материал представляет собой полимер, такой как подходящий капиллярный материал. Приведенные в качестве примера подходящие капиллярные материалы включают капиллярные материалы, обсужденные в данном документе, и в альтернативных вариантах осуществления могут включать полиэтилен высокой плотности (HDPE) или полиэтилентерефталат (PET).
На фиг. 5a показан вид снизу в перспективе картриджа, показанного на фиг. 3. Как показано на фиг. 5a, нагреватель в сборе проходит в боковой плоскости и проходит в сторону за пределы корпуса 24, так что нагреватель в сборе образует фланец вокруг верхней части корпуса 24. Открытые части электрических контактов 32 обращены в направлении вставки картриджа, так что, когда картридж полностью вставлен в полость 18, открытые части контактов 32 находятся в контакте с электрическими соединителями 19. Выступ, обеспеченный на стороне покрытия 26 для обеспечения пользователю возможности взяться за покрытие при его снятии, может быть хорошо виден. На фиг. 5a также проиллюстрирована задающая часть 25, образованная на основании картриджа для обеспечения правильной ориентации картриджа в полости устройства. Задающая часть 25 является частью корпуса 24, изготовленного методом литья под давлением, и выполнена с возможностью вмещения в соответствующий паз (не проиллюстрированный) в основании полости 18. После вмещения задающей части 25 в паз в полости, контакты 32 выравниваются с соединителями 19.
На фиг. 5b показан вид сверху в перспективе картриджа, показанного на фиг. 3, с удаленным покрытием. Нити 36 нагревателя являются открытыми в отверстии 35 в субстрате 34, так что испаренный субстрат, образующий аэрозоль, может выходить в поток воздуха через нагреватель в сборе.
Корпус 24 образован из термопласта, такого как полипропилен. Нагреватель в сборе 30 приклеен к корпусу 24 в данном примере. Тем не менее, существует несколько возможных способов сборки и заполнения картриджа.
Корпус картриджа может быть образован посредством литья под давлением. Капиллярные материалы 22, 27, 28 могут быть образованы посредством отрезания подходящих длин капиллярного материала от длинного стержня капиллярных волокон. Нагреватель в сборе может быть собран с использованием процесса, как описано со ссылкой на фиг. 13a, 13b и 13c. В одном варианте осуществления сборка картриджа осуществляется следующим образом: сначала в корпус 24 вставляется один или несколько капиллярных материалов 22, 27, 28. Затем заданный объем жидкого субстрата, образующего аэрозоль, вводится в корпус 24 и впитывается капиллярными материалами. Затем нагреватель в сборе 30 проталкивается в направлении открытого конца корпуса и прикрепляется к корпусу 24 посредством приклеивания, сварки, тепловой склейки, ультразвуковой сварки или других способов, которые теперь будут очевидны специалисту в данной области техники. Температура корпуса предпочтительно удерживается ниже 160oC во время любой операции уплотнения для предотвращения нежелательного удаления летучих соединений из субстрата, образующего аэрозоль. Капиллярный материал после разрезания может иметь такую длину, чтобы проходить наружу открытого конца корпуса 24 до тех пор, пока он не будет сжат нагревателем в сборе. Это способствует транспортировке субстрата, образующего аэрозоль, в промежутки элемента нагревателя при использовании.
В другом варианте осуществления вместо прижатия нагревателя в сборе 30 к корпусу 24, а затем уплотнения, нагреватель в сборе и открытый конец корпуса могут быть сначала подвергнуты быстрому нагреву, а затем прижаты друг к другу для связывания нагревателя в сборе 30 и корпуса 24.
Также возможным является объединение нагревателя в сборе 30 и корпуса 24 перед заполнением корпуса субстратом, образующим аэрозоль, а затем введение субстрата, образующего аэрозоль, внутрь корпуса 24. В данном случае нагреватель в сборе может быть прикреплен к картриджу с использованием любых описанных способов. Нагреватель в сборе или корпус затем прокалывается с использованием полой иглы и субстрат, образующий аэрозоль, вводится в капиллярный материал 22, 27, 28. Любое отверстие, выполненное полой иглой, затем уплотняется посредством тепловой склейки или с использованием уплотнительной ленты.
На фиг. 6 показана иллюстрация первого нагревателя в сборе 30 в соответствии с изобретением. Нагреватель в сборе содержит сетку, образованную из нержавеющей стали марки 304L, с размером сетки приблизительно 400 меш по стандарту США (приблизительно 400 нитей на дюйм). Нити имеют диаметр приблизительно 16 мкм. Сетка соединена с электрическими контактами 32, которые отделены друг от друга зазором 33 и образованы из медной фольги, имеющей толщину приблизительно 30 мкм. Электрические контакты 32 обеспечены на полиимидном субстрате 34, имеющем толщину приблизительно 120 мкм. Нити, образующие сетку, образуют промежутки между нитями. Промежутки в данном примере имеют ширину приблизительно 37 мкм, хотя могут быть использованы большие или меньшие промежутки. Использование сетки с данными приблизительными размерами обеспечивает возможность образования в промежутках мениска субстрата, образующего аэрозоль, и втягивания сеткой нагревателя в сборе субстрата, образующего аэрозоль, за счет капиллярного действия. Открытая площадь сетки, т.е. отношение площади промежутков к общей площади сетки, преимущественно составляет от 25 до 56%. Общее сопротивление нагревателя в сборе составляет приблизительно 1 Ом. Сетка предоставляет значительную часть данного сопротивления, так что большая часть тепла производится сеткой. В данном примере сетка имеет электрическое сопротивление, которое более чем в 100 раз превышает электрическое сопротивление электрических контактов 32.
Субстрат 34 является электрически изолирующим и в данном примере образован из полиимидного листа, имеющего толщину приблизительно 120 мкм. Субстрат имеет круглую форму и диаметр 8 мм. Сетка имеет прямоугольную форму и длину сторон 5 мм и 2 мм. Данные размеры предоставляют возможность выполнения полной системы, имеющей размер и форму, подобные традиционной сигарете или сигаре. Другим примером размеров, которые были признаны эффективными, являются круглый субстрат диаметром 5 мм и прямоугольная сетка размером 1 мм x 4 мм.
На фиг. 7 показана иллюстрация альтернативного приведенного в качестве примера нагревателя в сборе в соответствии с изобретением. Нагреватель в сборе, показанный на фиг. 7, является подобным показанному на фиг. 6, но сетка 36 заменена матрицей параллельных электрически проводящих нитей 37. Матрица нитей 37 образована из нержавеющей стали марки 304L и имеет диаметр приблизительно 16 мкм. Субстрат 34 и медный контакт 32 являются такими же, как описано со ссылкой на фиг. 6.
На фиг. 8 показана иллюстрация еще одного альтернативного нагревателя в сборе в соответствии с изобретением. Нагреватель в сборе, показанный на фиг. 8, является подобным показанному на фиг. 7, но в нагревателе в сборе, показанном на фиг. 8, нити 37 связаны непосредственно с субстратом 34 и контакты 32 затем связаны с нитями. Как и раньше, контакты 32 отделены друг от друга изолирующим зазором 33 и образованы из медной фольги, имеющей толщину приблизительно 30 мкм. Подобная компоновка нитей субстрата и контактов может быть использована для нагревателя сеточного типа, как показано на фиг. 6. Наличие контактов в качестве крайнего слоя может являться благоприятным для обеспечения надежного электрического контакта с источником питания.
На фиг. 9 показана иллюстрация альтернативного нагревателя в сборе в соответствии с изобретением. Нагреватель в сборе, показанный на фиг. 9, содержит множество нитей 38 нагревателя, которые вместе с электрическими контактами 39 образуют одно целое. Как нити, так и электрические контакты образованы из фольги из нержавеющей стали, которая протравливается для образования нитей 38. Контакты 39 отделены зазором 33 за исключением тех случаев, когда соединены нитями 38. Фольга из нержавеющей стали обеспечена на полиимидном субстрате 34. Нити 38 снова предоставляют значительную часть данного сопротивления, так что большая часть тепла производится нитями. В данном примере нити 38 имеют электрическое сопротивление, которое более чем в 100 раз превышает электрическое сопротивление электрических контактов 39.
В картридже, показанном на фиг. 3, 4 и 5, контакты 32 и нити 36, 38 расположены между слоем 34 субстрата и корпусом 24. Тем не менее, возможной является установка нагревателя в сборе на корпусе картриджа иным образом, чтобы полиимидный субстрат был расположен непосредственно рядом с корпусом 24. На фиг. 10 проиллюстрирована компоновка данного типа. На фиг. 10 показан нагреватель в сборе, содержащий сетку 56 из нержавеющей стали, прикрепленную к контактам 52 из медной фольги. Медные контакты 52 прикреплены к полиимидному субстрату 54. Отверстие 55 образовано в полиимидном субстрате 54. Полиимидный субстрат приварен к корпусу 24 картриджа. Капиллярный материал 22, пропитанный субстратом, образующим аэрозоль, заполняет корпус и проходит через отверстие для контакта с сеткой 55. Как показано, картридж вмещается в главную часть 11 устройства и удерживается между электрическими соединителями 59 и мундштучной частью 12. В данном варианте осуществления для электрического соединения электрических соединителей 59 с контактами 52 соединители 59 выполнены с возможностью прокалывания полиимидного субстрата 54, как показано. Электрические соединители выполнены с заостренными концами и вступают в контакт с нагревателем в сборе под действием пружин 57. Может быть выполнено предварительное прорезание полиимидного субстрата для обеспечения хорошего электрического контакта или на нем могут быть обеспечены отверстия, так что прокалывание субстрата может не являться необходимым. Пружины 57 также обеспечивают поддержание хорошего электрического контакта между контактами 52 и соединителями 59 независимо от ориентации системы в отношении гравитации.
Одно из средств обеспечения правильной ориентации картриджа 20 в полости 18 устройства было описано со ссылкой на фиг. 5a и 5b. Задающая часть 25 может быть образована в качестве части формованного корпуса 24 картриджа для обеспечения правильной ориентации. Тем не менее, очевидно, что возможны другие способы обеспечения правильной ориентации картриджа. В частности, если корпус изготовлен методом литья под давлением, существуют практически неограниченные возможности в отношении формы картриджа. После выбора необходимого внутреннего объема картриджа, форма картриджа может быть выполнена таким образом, чтобы подходить под любую полость. На фиг. 11a показан базовый вид одного возможного корпуса 70 картриджа, который обеспечивает ориентацию картриджа в двух возможных ориентациях. Корпус 70 картриджа включает две симметрично расположенные канавки 72. Канавки могут проходить частично или полностью вверх по стороне корпуса 70. Соответствующие ребра (не проиллюстрированные) могут быть образованы на стенках полости устройства, так что картридж может быть вмещен в полость только с двумя возможными ориентациями. В варианте осуществления, показанном на фиг. 11a, возможным является наличие лишь одного ребра в полости, так что одна из канавок 72 не заполняется ребром и может быть использована в качестве канала для потока воздуха внутри устройства. Конечно, возможным является ограничение картриджа одной ориентацией внутри полости посредством обеспечения только одной канавки в корпусе. Это проиллюстрировано на фиг. 11b, на которой показан корпус 74 картриджа с одной канавкой 76.
Несмотря на то, что в описанных вариантах осуществления имеются картриджи с корпусами, имеющими по существу круглое поперечное сечение, возможным конечно же является образование корпусов картриджа других форм, таких как прямоугольное поперечное сечение или треугольное поперечное сечение. Данные формы корпуса обеспечат необходимую ориентацию внутри полости соответствующей формы для обеспечения электрического соединения между устройством и картриджем.
Капиллярный материал 22 преимущественно ориентирован в корпусе 24 таким образом, чтобы передавать жидкость на нагреватель в сборе 30. После сборки картриджа нити 36, 37, 38 нагревателя могут находиться в контакте с капиллярным материалом 22 и, следовательно, субстрат, образующий аэрозоль, может передаваться непосредственно на сеточный нагреватель. На фиг. 12a показан подробный вид нитей 36 нагревателя в сборе, на котором показан мениск 40 жидкого субстрата, образующего аэрозоль, между нитями 36 нагревателя. Как показано, субстрат, образующий аэрозоль, находится в контакте с большей частью поверхности каждой нити, так что большая часть тепла, сгенерированного нагревателем в сборе, проходит непосредственно в субстрат, образующий аэрозоль. В отличие от этого, в традиционных нагревателях в сборе с фитилем и катушкой лишь небольшая часть проволоки нагревателя находится в контакте с субстратом, образующим аэрозоль. На фиг. 12b показан подробный вид, подобный показанному на фиг. 12a, на котором показан пример капиллярного материала 27, который проходит внутрь промежутков между нитями 36. Капиллярный материал 27 является первым капиллярным материалом, показанным на фиг. 4. Как показано, транспортировка жидкости на нити может быть обеспечена посредством обеспечения капиллярного материала, содержащего тонкие нити волокон, которые проходят внутрь промежутков между нитями 36.
При использовании нагреватель в сборе работает путем резистивного нагрева. Ток проходит через нити 36, 37, 38 под управлением управляющей электроники 16 для нагрева нитей до необходимого температурного диапазона. Сетка или матрица нитей имеет значительно более высокое электрическое сопротивление, чем электрические контакты 32 и электрические соединители 19, так что высокие температуры локализуются на нитях. Система может быть выполнена с возможностью генерирования тепла посредством обеспечения электрического тока на нагреватель в сборе в ответ на затяжку пользователем или может быть выполнена с возможностью непрерывного генерирования тепла, пока устройство находится во «включенном» состоянии. Различные материалы для нитей могут подходить для различных систем. Например, в непрерывно нагреваемой системе подходящими являются графитовые нити, поскольку они имеют относительно низкую удельную теплоемкость и совместимы с нагревом с использованием низкого тока. В системе, активируемой при затяжке, в которой тепло генерируется кратковременными вспышками с использованием импульсов высокого тока, нити из нержавеющей стали, имеющие высокую удельную теплоемкость, могут являться более подходящими.
В системе, активируемой при затяжке, устройство может содержать датчик затяжки, выполненный с возможностью обнаружения того, что пользователь втягивает воздух через мундштучную часть. Датчик затяжки (не проиллюстрированный) соединен с управляющей электроникой 16 и управляющая электроника 16 выполнена с возможностью подачи тока на нагреватель в сборе 30 только при определении того, что пользователь осуществляет затяжку из устройства. Любой подходящий датчик потока воздуха может быть использован в качестве датчика затяжки, например, микрофон.
В возможном варианте осуществления изменения сопротивления одной или нескольких нитей 36, 38 или элемента нагревателя в целом могут быть использованы для обнаружения изменения температуры элемента нагревателя. Это может быть использовано для регулировки питания, подаваемого на элемент нагревателя, для обеспечения того, чтобы он оставался в пределах необходимого температурного диапазона. Резкие изменения температуры могут также использоваться в качестве показателей для обнаружения изменений потока воздуха после элемента нагревателя в результате затяжки пользователем из системы. Одна или несколько нитей могут являться специально предназначенными температурными датчиками и могут быть образованы из материала, имеющего подходящий для данной цели температурный коэффициент сопротивления, такого как сплав железа и алюминия, Ni-Cr, платина, вольфрам или проволока из сплавов.
Поток воздуха через мундштучную часть при использовании системы проиллюстрирован на фиг. 1d. Мундштучная часть включает внутренние перегородки 17, которые в качестве одного целого сформованы с внешними стенками мундштучной части и обеспечивают поток воздуха через нагреватель в сборе 30 на картридж, где испаряется субстрат, образующий аэрозоль, при втягивании воздуха из впускных отверстий 13 в выпускное отверстие 15. По мере прохождения воздуха через нагреватель в сборе испаренный субстрат вовлекается в поток воздуха и охлаждается для образования аэрозоля перед выходом из выпускного отверстия 15. Соответственно, при использовании субстрат, образующий аэрозоль, по мере испарения проходит через нагреватель в сборе посредством прохождения через промежутки между нитями 36, 37, 38.
Существует ряд возможностей в отношении изготовления и материалов нагревателя в сборе. На фиг. 13a показана схематическая иллюстрация первого способа изготовления нагревателя в сборе. Ряд отверстий 82 предоставляется в рулоне полиимидной пленки 80. Отверстия 82 могут быть образованы посредством штамповки. Полосы медной фольги 84 наносятся на полиимидную пленку 80 между отверстиями. Ленты сетки 86 из нержавеющей стали затем наносятся на полиимидную пленку 80 поверх медной фольги 84 и отверстий 82 в направлении, перпендикулярном полосам медной фольги. Отдельные нагреватели в сборе 30 могут затем вырезаться или штамповаться вокруг каждого отверстия 82. Каждый нагреватель в сборе 30 включает часть медной фольги на противоположных сторонах отверстия, образующей электрические контакты, и полоска сетки из нержавеющей стали заполняет отверстие от одной части меди до другой, как показано на фиг. 6.
На фиг. 13b проиллюстрирован еще один возможный процесс изготовления. В процессе, показанном на фиг. 13b, полиимидная пленка 80 типа, использующегося в процессе, показанном на фиг. 13a, покрывается фольгой 90 из нержавеющей стали. Полиимидная пленка 80 имеет ряд образованных в ней отверстий 82, но данные отверстия покрыты фольгой 90 из нержавеющей стали. Фольга 90 затем протравливается для образования нитей 38, заполняющих отверстия 82, и отделения частей контакта на противоположных сторонах отверстий. Отдельные нагреватели в сборе 92 могут затем вырезаться или штамповаться вокруг каждого отверстия 82. Это предоставляет нагреватель в сборе типа, показанного на фиг. 9.
На фиг. 13c проиллюстрирован дополнительный альтернативный процесс. В процессе, показанном на фиг. 13c, сначала подготавливается материал 100 на основе графита. Материал 100 на основе графита содержит полосы электрически резистивных волокон, подходящих для применения в качестве нитей нагревателя, рядом с полосами относительно непроводящих волокон. Данные полосы волокон сплетаются вместе с полосами относительно электрически проводящих волокон, которые проходят перпендикулярно резистивным и непроводящим волокнам. Данный материал 100 затем связывается со слоем полиимидной пленки 80 типа, описанного со ссылкой на фиг. 13a и 13b, имеющего ряд отверстий 82. Отдельные нагреватели в сборе 102 могут затем вырезаться или штамповаться вокруг каждого отверстия. Каждый нагреватель в сборе 102 включает часть полосы проводящих волокон на противоположных сторонах отверстия и полосы электрически резистивных волокон, заполняющих отверстие.
Конструкция картриджа, показанная на фиг. 5a и 5b, имеет несколько преимуществ. Тем не менее, возможны альтернативные конструкции картриджа, использующие подобный тип нагревателя в сборе. На фиг. 14 проиллюстрирована альтернативная конструкция картриджа, которая подходит для различных схем потока воздуха через систему. В варианте осуществления, показанном на фиг. 14, картридж 108 выполнен с возможностью вставки в устройство в направлении, указанном стрелкой 110. Картридж 108 содержит корпус 112, который имеет форму, подобную половине цилиндра, и одна сторона которого открыта. Нагреватель в сборе 114 располагается на открытой стороне и приклеивается или приваривается к корпусу 112. Нагреватель в сборе 114 содержит электрически изолирующий субстрат 116, такой как полиимид, имеющий образованное в нем отверстие. Элемент нагревателя, содержащий сетку 118 из нержавеющей стали и пару контактных полосок 120, связан с электрически изолирующим субстратом 116 и заполняет отверстие. Контактные полоски 120 огибают корпус 112 для образования контактных площадок на изогнутой поверхности корпуса. Электрические контактные площадки выполнены с возможностью контакта с соответствующими контактами (не проиллюстрированными) в устройстве, генерирующем аэрозоль. Корпус 112 заполнен капиллярным материалом (невидимым на фиг. 14), пропитанным субстратом, образующим аэрозоль, как описано со ссылкой на вариант осуществления, показанный на фиг. 1a-1d.
Картридж, показанный на фиг. 14, выполнен с возможностью потока воздуха через нагреватель в сборе 114 в направлении, противоположном стрелке 110. Воздух втягивается в систему через впускное отверстие для воздуха, обеспеченное в главной части устройства, и всасывается через нагреватель в сборе 114 в мундштучную часть устройства (или картриджа) и в рот пользователя. Воздух, втягивающийся в систему, может быть направлен, например, в направлении, параллельно вдоль сетки 118, соответствующим расположением впускных отверстий для воздуха.
Альтернативные варианты осуществления картриджа 108 проиллюстрированы на фиг. 15a и 15b. На фиг. 15a дополнительно показаны контактные полоски 120, расположенные на расстоянии друг от друга и проходящие по длине внешней поверхности, имеющей сетку 118. На фиг. 15b дополнительно показаны контакты 120, имеющие приблизительно L-образную форму. Обе конструкции картриджа, проиллюстрированные на фиг. 15a и 15b, могут быть использованы для обеспечения еще больших площадей контакта для дополнительного обеспечения простого контакта с контактами 19 при необходимости. Полоски 120, как проиллюстрировано на фиг. 15a, могут быть также выполнены с возможностью скольжения по контакту 19, который выполнен в рельсовой конфигурации (не проиллюстрированной) для приема полосок 120 для дополнительного расположения картриджа. Такая рельсовая конфигурация может преимущественно предоставлять периодическую очистку контактов 19, поскольку вставка и удаление картриджа будут иметь чистящий эффект на основе трения контакта, скользящего внутрь и наружу по рельсам.
На фиг. 16 проиллюстрирован еще один вариант осуществления системы, генерирующей аэрозоль, включающей проницаемый для жидкости электрический нагреватель в сборе. На фиг. 16 проиллюстрирована система, в которой нагреватель в сборе 30 обеспечен на конце картриджа 20, который находится напротив мундштучной части 12. Поток воздуха попадает во впускное отверстие 1601 для воздуха и проходит мимо нагревателя в сборе и через выпускное отверстие 1603 для воздуха вдоль маршрута 1605 потока. Электрические контакты могут быть расположены в любом удобном месте. Такая конфигурация является преимущественной, поскольку она обеспечивает более короткие электрические соединения внутри системы.
Другие конструкции картриджа, включающие нагреватель в сборе в соответствии с настоящим изобретением, могут быть теперь представлены специалистом в данной области техники. Например, картридж может включать в себя мундштучную часть, может включать в себя более одного нагревателя в сборе и может иметь любую необходимую форму. Кроме этого, нагреватель в сборе в соответствии с изобретением может использоваться в системах других типов, отличающихся от уже описанных, таких как увлажнители, освежители воздуха и другие системы, генерирующие аэрозоль.
Приведенные в качестве примера варианты осуществления, описанные выше, представлены для пояснения, а не ограничения. Ввиду вышеописанных приведенных в качестве примера вариантов осуществления, другие варианты осуществления, соответствующие вышеуказанным приведенным в качестве примера вариантам осуществления, теперь будут очевидны специалисту в данной области техники.
Группа изобретений относится к системе, генерирующей аэрозоль, и способу изготовления проницаемого для жидкости электрического нагревателя в сборе. Система, генерирующая аэрозоль, содержит проницаемый для жидкости электрический нагреватель в сборе, при этом нагреватель в сборе содержит: электрически изолирующий субстрат, отверстие, образованное в электрически изолирующем субстрате, и элемент нагревателя, имеющий первую внешнюю поверхность и прикрепленный к электрически изолирующему субстрату. Элемент нагревателя заполняет отверстие и содержит множество электрически проводящих нитей, соединенных с первой и второй частями электрически проводящего контакта. Первая и вторая части электрически проводящего контакта расположены на противоположных сторонах отверстия относительно друг друга, при этом первая и вторая части электрически проводящего контакта выполнены с возможностью обеспечения возможности контакта с внешним источником питания. Обеспечивается большая площадь контакта нагревателя с испаряющейся жидкостью. Обеспечение частей электрически проводящего контакта, образующих часть элемента нагревателя, обеспечивает надежное и простое соединение нагревателя в сборе с источником питания. 2 н. и 14 з.п. ф-лы, 25 ил.
1. Система, генерирующая аэрозоль, содержащая проницаемый для жидкости электрический нагреватель в сборе, при этом нагреватель в сборе содержит электрически изолирующий субстрат, отверстие, образованное в электрически изолирующем субстрате, и элемент нагревателя, прикрепленный к электрически изолирующему субстрату, при этом элемент нагревателя заполняет отверстие и содержит множество электрически проводящих нитей, соединенных с первой и второй частями электрически проводящего контакта, причем первая и вторая части электрически проводящего контакта расположены на противоположных сторонах отверстия относительно друг друга, при этом первая и вторая части электрически проводящего контакта выполнены с возможностью обеспечения контакта с внешним источником питания.
2. Система, генерирующая аэрозоль, по п.1, имеющая продольную ось, при этом элемент нагревателя проходит параллельно продольной оси.
3. Система, генерирующая аэрозоль, по п.1, дополнительно содержащая главный блок и картридж, который соединен с возможностью съема с главным блоком.
4. Система, генерирующая аэрозоль, по п.3, в которой главный блок является продолговатым и имеет дальний конец и ближний конец, а также мундштучную часть на дальнем конце, при этом продольная ось проходит от ближнего конца до дальнего конца главного блока, при этом система выполнена так, что, при использовании, когда картридж вставлен в главный блок, воздух, втягиваемый в систему, направляется после нагревателя в сборе вдоль продольной оси.
5. Система, генерирующая аэрозоль, по п.3, в которой картридж выполнен с возможностью вставки в главный блок в первом направлении, и система выполнена так, что, при использовании, когда картридж вставлен в главный блок, воздух, втягиваемый в систему, направляется после нагревателя в сборе в направлении, противоположном первому направлению.
6. Система, генерирующая аэрозоль, по любому из пп.1-5, отличающаяся тем, что множество электрически проводящих нитей занимает площадь от 10 до 50% площади нагревателя в сборе.
7. Система, генерирующая аэрозоль, по любому из пп.1-6, отличающаяся тем, что электрическое сопротивление электрически проводящих нитей по меньшей мере на два порядка больше, чем электрическое сопротивление частей контакта.
8. Система, генерирующая аэрозоль, по любому из пп.1-7, отличающаяся тем, что элемент нагревателя имеет первую внешнюю поверхность, которая прикреплена к электрически изолирующему субстрату, при этом первая и вторая части электрически проводящего контакта выполнены с возможностью обеспечения контакта с внешним источником питания на второй внешней поверхности элемента нагревателя, противоположной первой внешней поверхности.
9. Система, генерирующая аэрозоль, по любому из пп.1-8, отличающаяся тем, что электрически проводящие нити находятся в одной плоскости.
10. Система, генерирующая аэрозоль, по любому из пп.1-9, отличающаяся тем, что электрически проводящие нити состоят из матрицы нитей, расположенных параллельно друг другу.
11. Система, генерирующая аэрозоль, по любому из пп.1-10, отличающаяся тем, что площадь электрически проводящих нитей составляет менее 25 мм2.
12. Система, генерирующая аэрозоль, по любому из пп.1-11, отличающаяся тем, что первая и вторая части электрически проводящего контакта содержат плоские части контакта, прикрепленные к электрически проводящим нитям.
13. Система, генерирующая аэрозоль, по любому из пп.1-12, отличающаяся тем, что нагреватель в сборе содержит по меньшей мере одну нить, выполненную из первого материала, и по меньшей мере одну нить, выполненную из второго материала, отличного от первого материала.
14. Система, генерирующая аэрозоль, по любому из пп.1-13, отличающаяся тем, что дополнительно содержит часть для хранения жидкости, содержащую корпус, содержащий жидкий субстрат, образующий аэрозоль, при этом нагреватель в сборе прикреплен к корпусу части для хранения жидкости.
15. Система, генерирующая аэрозоль, по любому из пп.1-14, отличающаяся тем, что представляет собой электрически управляемую курительную систему.
16. Способ изготовления проницаемого для жидкости электрического нагревателя в сборе, подходящего для применения в системе, генерирующей аэрозоль, включающий:
обеспечение электрически изолирующего субстрата;
образование одного или нескольких отверстий в субстрате;
обеспечение по меньшей мере двух плоских частей электрически проводящего контакта на субстрате на противоположных сторонах одного или нескольких отверстий относительно друг друга; и
обеспечение множества электрически проводящих нитей на субстрате, проходящем между по меньшей мере двумя плоскими частями электрически проводящего контакта поперек одного или нескольких отверстий.
Способ приготовления лака | 1924 |
|
SU2011A1 |
Колосоуборка | 1923 |
|
SU2009A1 |
НАГРЕВАТЕЛЬ ДЛЯ ИСПОЛЬЗОВАНИЯ В КУРИТЕЛЬНОМ ИЗДЕЛИИ С ИСТОЧНИКОМ ЭЛЕКТРОЭНЕРГИИ ДЛЯ НАГРЕВА ТАБАЧНОЙ АРОМАТНОЙ СРЕДЫ, НАГРЕВАТЕЛЬ ДЛЯ ИСПОЛЬЗОВАНИЯ В КУРИТЕЛЬНОМ ИЗДЕЛИИ С ИСТОЧНИКОМ ЭЛЕКТРОЭНЕРГИИ ДЛЯ НАГРЕВА ЦИЛИНДРИЧЕСКОЙ СИГАРЕТЫ И СПОСОБ ИЗГОТОВЛЕНИЯ НАГРЕВАТЕЛЯ | 1995 |
|
RU2132629C1 |
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Авторы
Даты
2022-07-06—Публикация
2014-12-15—Подача