Устройство и способ измерения ускорения на оптическом разряде с электродным поджигом Российский патент 2022 года по МПК G01P15/00 

Описание патента на изобретение RU2781365C1

Заявляемое изобретение относится к области приборостроения, в частности к системам измерения параметров движения подвижных объектов, и может быть использовано в приборах, измеряющих ускорение объектов.

Оптический разряд в газе, поддерживаемый сфокусированным лазерным излучением, представляет собой малогабаритный высокоинтенсивный источник тепловой энергии. Температура плазмы в оптическом разряде существенно выше, чем в других типах разрядов – 15000-20000 К, тогда как в дуговом обычно 7000-8000 К, в ВЧ разряде – 9000-10000 К (Генералов Н.А., Зимаков В.П. и др. «Непрерывно горящий оптический разряд». Письма в ЖЭТФ, 1970, т. 11, с. 447-449).

Источники широкополосного излучения на базе такого оптического разряда выпускает, например, компания Energetiq Technology, Inc. (США), они подробно описаны на сайте этой компании (https://www.energetiq.com/ldls-laser-driven-light-source-products-energetiq).

Малые геометрические размеры лазерной плазмы, составляющие доли миллиметра, наряду с ее высокой температурой и значительным удельным энерговыделением приводят к образованию конвективных потоков газа в разрядной камере, сопровождающимися характерными периодическими пульсациями (Патент RU 2738461 C1, «Устройство и способ устранения колебаний оптического разряда», опубл. 14.12.2020, Бюл. № 35).

Оптический разряд, как источник тепловой энергии для получения конвективного потока, может быть использован для создания малогабаритного быстродействующего измерителя ускорения – акселерометра, не имеющего подвижных механических деталей. При этом в тепло превращается 20-30% энергии лазерного излучения. Стандартный диаметр камеры для создания оптического разряда составляет 10-20 мм, камера заполняется ксеноном при давлении 10-30 Атмосфер, для поджига и поддержания оптического разряда могут быть использованы известные из уровня техники малогабаритные волоконные лазерные модули мощностью 30-70 Вт, например, (https://www.ipgphotonics.com/ru/products/komponenty/pld-diody-nakachki).

Известен акселерометр на фотоматрице, принятый за аналог (Патент RU 2748582 «Акселерометр на фотоматрице», опубл. 12.03.2021, Бюл. № 8), характеризующийся тем, что содержит, по меньшей мере, один источник света; по меньшей мере, одну фотоматрицу; контроллер для обработки информации; анализируемый объект - рабочее тело, ограничитель хода рабочего тела или ограничитель объема рабочего тела, в качестве рабочего тела используют плазму, твёрдое, жидкое, газообразное тело, а также их комбинации, причем рабочее тело выполнено с возможностью определения ускорения за счет изменения рабочего тела под действием этого ускорения - изменения объема, размера, формы, скорости перемещения, положения в пространстве относительно других объектов, при этом дополнительно используют сведения об изменении температуры рабочего тела. Известный акселерометр позволяет измерить ускорение.

Недостатком известного акселерометра является техническая сложность измерения уровня затемнения фотоматрицы в случае использования газа в качестве рабочего тела. Так, например, при ускорении акселерометра, сопоставимом с ускорением свободного падения g, при размере рабочего тела акселерометра, например, 10 см и применении в качестве рабочего газа воздуха, разность плотности газа на разных концах акселерометра составит величину 0,002%, что достаточно сложно измерить, учитывая шумы и разброс чувствительности элементов фотоматрицы. Кроме того, как следует из уровня техники, плотность газа обратно пропорциональна его абсолютной температуре в данной точке, что потребует применения для измерений плотности прецизионного термостатирования объема рабочего тела, на что требуется время для стабилизации температуры.

Недостатком известного акселерометра также является малая точность дополнительно используемых сведений об изменении при ускорении температуры рабочего тела. Из уровня техники известно, что при равноускоренном движении температура тела не изменяется. Изменения температуры проявятся только при изменениях ускорения, откуда следует, что для получения реального значения ускорения требуется цифровое интегрирование полученного сигнала об изменении температуры, что связано с накоплением ошибки и потерей точности измерений. При этом следует также учесть малые изменения температуры, если использовать акселерометр в диапазоне нескольких g, и необходимое время на усреднение температуры по объему рабочего тела. Перечисленные недостатки усложняют конструкцию известного акселерометра и замедляют скорость измерения ускорения.

Известен акселерометр на основе газового мятника, принятый за прототип (US 20080295591A1, AIR FLOW INTERTIAL SENSOR, Pub. Date: Dec. 4, 2008). Вариант известного акселерометра для двумерного измерения ускорения состоит из двух герметичных цилиндрических камер, расположенных перпендикулярно одна другой, в каждой из которых размещены три изолированных друг от друга параллельных проводника. По среднему проводнику, расположенному по центру цилиндрической камеры, пропускают ток, в результате чего проводник нагревается, нагревает расположенный вокруг него газ, который расширяется и поднимается вверх. Два других проводника, расположенные немного выше и симметрично первому проводнику, служат датчиками изменения температуры газа. Сигналы с датчиков измерения температуры подаются на мостовую схему, схему усиления, схему фильтрации, схему компенсации нулевого положения, схему компенсации колебаний. В результате этих вычислений получается сигнал изменения наклона акселерометра по направлению, перпендикулярному направлению центрального проводника, который и определяет ускорение. Составляющая наклона, определяющего ускорение, параллельного направлению центрального проводника, измеряется аналогично на такой же камере, расположенной перпендикулярно первой камере. Две взаимно перпендикулярные составляющие ускорения по осям Х и Y однозначно определяют результирующее ускорение в горизонтальной плоскости.

Недостатком известного акселерометра является недостаточная механическая прочность конструкции из-за наличия металлических проводников, размещенных в цилиндрических камерах. Возможны их вибрации и провисания при ударных нагрузках, что может уменьшить точность измерений. Недостатком способа измерения является инерционность передачи тепла от газа к металлическим проводникам, что уменьшает скорость реакции акселерометра на быстрые изменения ускорения.

Задачей изобретения является расширение диапазона измерения ускорений и улучшение быстродействия за счет устройства, не содержащего подвижных механических деталей, за счет улучшения характеристик при использовании для измерения ускорения теплового потока, имеющего малую инерционность.

Решение поставленной задачи достигается тем, что устройство измерения ускорения на оптическом разряде с электродным поджигом состоит из сферической камеры, прозрачной для лазерного излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры. На всей внутренней поверхности сферической камеры, свободной от лазерного излучения одного или нескольких лазеров и расположения металлических электродов, размещены датчики теплового потока, размер каждого датчика теплового потока выбрано меньше диаметра теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры, а расстояние между датчиками теплового потока выбрано таким, чтобы по крайней мере один датчик теплового потока целиком попадал в тепловое пятно теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры.

Поставленная задача также решается тем, что в способе измерения ускорения на оптическом разряде с электродным поджигом, при котором первоначальный поджиг оптического разряда осуществляют внешним импульсом напряжения, превышающим пробойное, поданным между двумя металлическими электродами, для измерения ускорения используют тепловой поток; между двумя металлическими электродами подают напряжение, меньшее пробойного, определяют частоту периодических колебаний теплового потока, измеряя колебания тока, протекающего между двумя металлическими электродами при поданном на них напряжении меньше пробойного, определяют модуль вектора результирующего ускорения; а датчиками теплового потока измеряют направление теплового потока нагретого от оптического разряда газа; при этом размер каждого датчика теплового потока выбирают меньше диаметра теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры, а расстояние между датчиками теплового потока выбирают таким, чтобы по крайней мере один датчик теплового потока целиком попадал в тепловое пятно теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры.

Сущность заявляемого изобретения поясняется примерами его реализации и графическими материалами.

На Фиг. 1 представлено схематичное изображение устройства для реализации заявляемого изобретения.

На Фиг. 2 изображены последовательные по времени теневые фотографии теплового потока нагретого от оптического разряда газа.

На Фиг. 3 изображено численное моделирование теплового потока нагретого от оптического разряда газа, образующегося в заявляемом изобретении.

Устройство измерения ускорения на оптическом разряде с электродным поджигом, изображенное на Фиг. 1, состоит из прозрачной для лазерного излучения применяемых лазеров герметичной сферической камеры 1, заполненной газовой смесью. В качестве примера газовой смеси можно привести заполнение камеры ксеноном при давлении 15-25 атмосфер, что часто применяется для получения оптического разряда. Излучение одного или нескольких лазеров 2 (на Фиг. 1 для примера показан один лазер), используемых для получения оптического разряда 3, сфокусировано в центре сферической камеры 1 для обеспечения минимальных оптических искажений, которые могут быть вызваны прохождением лазерного излучения через прозрачные стенки сферической камеры 1. Условная форма лазерного излучения ограничена на Фиг. 1 пунктирными линиями 4. Лазерное излучение от лазера 2 сфокусировано в центре сферической камеры 1 линзами, условно показанными на выходе лазера 2 на Фиг. 1, либо сферическими, параболическими или другими, известными из уровня техники зеркалами и оптическими элементами. Вблизи оптического разряда 3 расположены концы двух металлических электродов 5, впаянных в поверхность сферической камеры 1. Противоположные концы электродов 5 выведены из корпуса сферической камеры 1 и используются для первоначального поджига оптического разряда 3 и измерения тока через оптический разряд. На всю внутреннюю поверхность сферической камеры 1, свободную от прохождения лазерного излучения от лазера 2, ограниченного пунктирными линиями 4, и расположения металлических электродов 5, нанесены (наклеены, напылены, вплавлены) известные из уровня техники датчики теплового потока 6. Размер каждого датчика теплового потока 6 выбирают меньше диаметра пятна потока нагретого газа 7 от оптического разряда 3 на внутренней поверхности сферической камеры 1, а расстояние между датчиками теплового потока 6 выбирают таким, чтобы по крайней мере один датчик теплового потока 6 целиком попадал в тепловое пятно теплового потока нагретого газа 7 от оптического разряда 3 на внутренней поверхности сферической камеры 1. Такое соотношение размера датчика теплового потока 6 и диаметра пятна потока нагретого газа 7 от оптического разряда 3 обеспечивает однозначное определение положения центра пятна потока нагретого газа от оптического разряда 3 за счет получения электрических сигналов с соседних датчиков 6 теплового потока 7. Выбор размера датчика теплового потока 6 больше диаметра пятна потока нагретого газа 7 от оптического разряда 3 приведет к неоднозначности определения геометрического положения пятна потока нагретого газа 7 от оптического разряда 3 на внутренней поверхности сферической камеры 1. Например, изменение положения пятна теплового потока нагретого оптическим разрядом газа 7 внутри одного датчика теплового потока 6 не приведет к изменению электрического сигнала с этого датчика. Для увеличения точности определения геометрического положения пятна потока нагретого газа 7 от оптического разряда 3 на внутренней поверхности сферической камеры 1, следует использовать большое количество датчиков теплового потока 6, позволяющее получать более точное распределение интенсивности теплового потока по внутренней поверхности сферической камеры 1. Электрические сигналы с датчиков теплового потока 6 можно обработать известным из уровня техники контроллером с соответствующим программным обеспечением, что позволяет определить положение центра пятна теплового потока нагретого газа 7 от оптического разряда 3.

Изобретение работает следующим образом. Лазерное излучение от одного или нескольких лазеров 2 фокусируют через прозрачные стенки сферической камеры 1 в области ее центра, где предполагается зажечь оптический разряд 3, который используют как концентрированный источник тепла. Первоначальный поджиг оптического разряда 3 осуществляют известными из уровня техники способом, подачей импульса напряжения большего пробойного между электродами 5. При этом вспыхивает оптический разряд 3 и начинает интенсивно поглощает лазерное излучение от лазеров 2. Далее оптический разряд 3 поддерживают стационарно за счет поглощения поступающего лазерного излучения. Интенсивное выделение тепла оптическим разрядом 3 нагревает окружающую газовую смесь, образующую разогретый объем газа, увеличивающийся в размерах, и ограниченный фронтом температуры нагретого от оптического разряда 3 газа 7. Облако горячего газа 7, ограниченное фронтом температуры, поднимается вверх по закону Архимеда, но при этом возникают периодические колебания, причина которых связана с высокой интенсивностью выделения тепла оптическим разрядом 3 и известна из исследований оптического разряда (Патент RU2534223 от 27.11.2014), (Патент US 20130342105A1 Pub. Date: Dec. 26, 2013 LASER SUSTAINED PLASMA LIGHT SOURCE WITH ELECTRICALLY INDUCED GAS FLOW). Частота этих колебаний в стандартных известных из уровня техники для оптического разряда условиях составляет десятки герц и определяется тепловыми процессами, происходящими на разделе между горячим газом 7 вокруг оптического разряда 3 и относительно холодным газом в остальном объеме сферической камеры 1. Как следует из законов физики, при неподвижном положении акселерометра относительно Земли или при перемещении акселерометра с постоянной скоростью относительно Земли, тепловой поток нагретого газа 7 от оптического разряда 3, ограниченный фронтом температуры, поднимается в сторону, противоположную направлению ускорения свободного падения g. В случае ускоренного или замедленного перемещения акселерометра относительно Земли тепловой поток нагретого газа 7 от оптического разряда 3 поднимается в направлении, определяемом вектором, равным разности между вектором ускорения акселерометра и вектором ускорения свободного падения g. Тепловой поток нагретого газа 7 от оптического разряда 3, ограниченный фронтом температуры, достигает стенки сферической камеры 1 с установленными на ее внутренней поверхности датчиками теплового потока 6, при этом каждый датчик теплового потока 6 вырабатывает сигнал, пропорциональный падающему на него тепловому потоку. Используя электрические сигналы с датчиков теплового потока 6, например, обработанные с помощью контроллера, вычисляют положение геометрического места центра пятна теплового потока нагретого от оптического разряда 3 газа 7 на поверхности сферической камеры 1, а по направлению вектора, идущего от центра неподвижного оптического разряда 3 к центру пятна теплового потока 7, нагретого от оптического разряда 3 на поверхности сферической камеры 1, определяют направление вектора, представляющего собой суперпозицию вектора ускорения акселерометра, вызванного перемещением, и вектора ускорения свободного падения.

Но одного только направления потока нагретого газа 7 от оптического разряда 3 недостаточно для определения ускорения. В самом деле, предположим, что акселерометр двигается ускоренно с ускорением а вертикально вверх, при этом вектор ускорения а и вектор ускорения свободного падения g параллельны. Очевидно, что направление теплового потока нагретого газа 7 от оптического разряда 3 также останется вертикальным, как это было при отсутствии ускорения а, но само результирующее ускорение изменится. Для устранения этого недостатка измеряют частоту периодических колебаний теплового потока нагретого газа 7 от оптического разряда 3, получаемую с помощью электродов 5, на которые подают напряжение меньшее пробойного и измеряют колебания тока через электроды при помощи, например, частотомера или контроллера. Колебания тока вызываются колебаниями пузыря нагретого газа, расположенного вблизи электродов 5. Это показано на Фиг. 2, где черные треугольники, расположенные ниже середины фотографии, представляют собой концы металлических электродов. Колебания области нагретого газа хорошо видны на последовательных кадрах на Фиг. 2. Высокотемпературный оптический разряд вызывает вокруг себя фотоионизацию окружающего газа, а из уровня техники известно, что газ с высокой температурой обладает большей проводимостью, чем холодный газ. Колебания двух соприкасающихся областей газа с разной температурой, а значит, и разной проводимостью, и вызывают изменение тока между электродами. Абсолютная величина вектора ускорения в направлении теплового потока нагретого газа 7 от оптического разряда 3 может быть получена из формулы f = 0.5(g/2r)1/2, где f – частота колебаний факела теплового потока нагретого газа, поднимающегося от оптического разряда, g – ускорение свободного падения, r - минимальный радиус фронта нагретого газа вокруг оптического разряда. Приведенная формула опубликована, например, в (M.A. Kotov, S.Yu. Lavrentyev, N.G. Solovyov, A.N. Shemyakin, M.Yu. Yakimov. Dynamics of laser plasma convective plume in high pressure xenon. Journal of Physics: Conference Series 1675 (2020) 012073, IOP Publishing. DOI: 10.1088/1742-6596/1675/1/012073).

В результате математического преобразования получается формула

e = 8 f 2r

где e – абсолютная величина результирующего вектора ускорения, действующего на акселерометр, f – частота периодических колебаний теплового потока нагретого газа 7 от оптического разряда 3, r – минимальный радиус фронта нагретого газа вокруг оптического разряда 3. Величину r можно измерить экспериментально, либо вычислить при неподвижном акселерометре, зная величину ускорения свободного падения в данной точке и измерив частоту периодических колебаний пятна теплового потока нагретого газа 7 от оптического разряда 3, тем самым осуществив калибровку заявляемого измерителя ускорения.

Таким образом, направление теплового потока нагретого газа 7 от оптического разряда 3 и частота периодических колебаний теплового потока 7 при известном минимальном радиусе r фронта нагретого газа 7 вокруг оптического разряда 3 однозначно определяют направление и модуль вектора результирующего ускорения акселерометра в трех измерениях.

На Фиг. 2 в качестве пояснения возникновения периодических колебаний теплового потока приведены теневые фотографии последовательных кадров видеосъемки периодических колебаний теплового потока нагретого оптическим разрядом газа внутри сферической камеры, заполненной ксеноном при давлении 30 бар и мощности лазерного излучения 55 Вт. (Снимки сделаны авторами). Размер каждого кадра 3х4 мм. Показан один период колебаний на 8 кадрах, частота колебаний 43 Гц. Оптический разряд виден в виде яркого пятна белого цвета. Треугольные черные выступы на правой и левой стороне каждого кадра – металлические электроды. На последовательных снимках видно, что от Кадра 1 до Кадра 4 растет диаметр пузыря нагретого оптическим разрядом газа. При дальнейшем нагреве по закону Архимеда тепловой пузырь начинает всплывать вверх, как показано на Кадрах 5-8, при этом на его месте образуется новый расширяющийся пузырь нагретого газа, и процесс периодически повторяется снова с Кадра 1.

Геометрические искажения, вносимые формой сферической камеры, не позволяют рассмотреть движение теплового потока нагретого от оптического разряда газа вблизи внутренней поверхности сферической камеры. Для изучения теплового потока авторами проведено численное моделирование поведения теплового потока нагретого оптическим разрядом газа в сферической камере внутренним диаметром 16 мм. Результаты численного моделирования, показанные на Фиг. 3, с хорошей точностью совпадают с экспериментальными данными. Белый цвет на последовательных кадрах соответствует максимальной температуре газа, черный цвет – минимальной температуре. Окружность, ограничивающая черно-белое изображение, моделирует внутреннюю поверхность сферической камеры диаметром 16 мм. На последовательных кадрах с «Кадр 1 модель» по «Кадр 5 модель» показан один период распространения теплового потока нагретого от оптического разряда газа. На кадрах, полученных в результате численного моделирования, оптический разряд, используемый как источник тепла, расположен в центре сферической камеры, как и указано в заявляемом изобретении. Из приведенных изображений следует, что поток нагретого оптическим разрядом газа распространяется вертикально вверх, что обусловлено ускорением свободного падения g. Также из последовательных кадров можно сделать вывод, что форма теплового потока изменяется из-за периодических колебаний поднимающегося от оптического разряда газа, что позволяет зарегистрировать эти периодические колебания при помощи металлических электродов (на Фиг. 3 не показаны), как указано в заявляемом изобретении. Направление вектора от известного центра оптического разряда к центру пятна теплового потока на внутренней поверхности сферической камеры и частота периодических колебаний теплового потока вблизи оптического разряда однозначно определяют направление и абсолютную величину ускорения, измеряемые в заявляемом изобретении.

Характерная особенность заявляемого изобретения состоит в отсутствии подвижных механических деталей, для измерения ускорения используется тепловой поток нагретого газа, обладающий малой инерционностью и массой. Датчики теплового потока позволяют измерить направление ускорения по трем координатам, а частота колебаний тока между электродами дает возможность определить абсолютную величину ускорения. На основе изобретения возможно создание малогабаритных акселерометров с большим динамическим диапазоном измерений, устойчивых к ударным нагрузкам.

Похожие патенты RU2781365C1

название год авторы номер документа
Устройство и способ измерения ускорения на оптическом разряде с термоиндикаторной краской 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Лаврентьев Сергей Юрьевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2781746C1
Устройство и способ измерения ускорения на оптическом разряде с фотолюминофором 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2781362C1
Устройство и способ измерения ускорения на оптическом разряде электродным и теневым методом 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2781363C1
Устройство и способ измерения вертикального ускорения на оптическом разряде 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2781753C1
Устройство и способ измерения ускорения на оптическом разряде с лазерным поджигом 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Лаврентьев Сергей Юрьевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2780300C1
Устройство и способ измерения ускорения на оптическом разряде с тепловизорами 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Лаврентьев Сергей Юрьевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2781745C1
Устройство и способ измерения ускорения на оптическом разряде теневым методом 2022
  • Соловьев Николай Германович
  • Котов Михаил Алтаевич
  • Лаврентьев Сергей Юрьевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2781747C1
Устройство и способ избавления от неустойчивостей оптического разряда 2020
  • Соловьев Николай Германович
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2734112C1
Устройство и способ устранения неустойчивостей оптического разряда 2020
  • Соловьев Николай Германович
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2738462C1
Способ предотвращения колебаний оптического разряда 2020
  • Соловьев Николай Германович
  • Лаврентьев Сергей Юрьевич
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2734111C1

Иллюстрации к изобретению RU 2 781 365 C1

Реферат патента 2022 года Устройство и способ измерения ускорения на оптическом разряде с электродным поджигом

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде с электродным поджигом состоит из сферической камеры, прозрачной для лазерного излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры. На всей внутренней поверхности сферической камеры, свободной от лазерного излучения одного или нескольких лазеров и расположения металлических электродов, размещены датчики теплового потока, размер каждого датчика теплового потока выбрано меньше диаметра теплового потока, нагретого от оптического разряда газа на внутренней поверхности сферической камеры. Технический результат – расширение диапазона измерения ускорений и улучшение быстродействия измерения ускорений. 2 н.п. ф-лы, 3 ил.

Формула изобретения RU 2 781 365 C1

1. Устройство измерения ускорения на оптическом разряде с электродным поджигом, состоящее из сферической камеры, прозрачной для лазерного излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры, отличающееся тем, что вся внутренняя поверхность сферической камеры, свободная от лазерного излучения одного или нескольких лазеров и расположения металлических электродов, имеет датчики теплового потока, размер каждого датчика теплового потока выбран меньше диаметра теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры, а расстояние между датчиками теплового потока выбрано таким, чтобы по крайней мере один датчик теплового потока целиком попадал в тепловое пятно теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры.

2. Способ измерения ускорения на оптическом разряде с электродным поджигом, при котором первоначальный поджиг оптического разряда осуществляют внешним импульсом напряжения, превышающим пробойное, поданным между двумя металлическими электродами, отличающийся тем, что для измерения ускорения используют тепловой поток; между двумя металлическими электродами подают напряжение, меньшее пробойного; определяют частоту периодических колебаний теплового потока, измеряя колебания тока, протекающего между двумя металлическими электродами при поданном на них напряжении меньше пробойного, определяют модуль вектора результирующего ускорения; а датчиками теплового потока измеряют направление теплового потока нагретого от оптического разряда газа; при этом размер каждого датчика теплового потока выбирают меньше диаметра теплового потока, нагретого от оптического разряда газа на внутренней поверхности сферической камеры, а расстояние между датчиками теплового потока выбирают таким, чтобы по крайней мере один датчик теплового потока целиком попадал в тепловое пятно теплового потока, нагретого от оптического разряда газа на внутренней поверхности сферической камеры.

Документы, цитированные в отчете о поиске Патент 2022 года RU2781365C1

US 2008295591 A1, 04.12.2008
US 4048859 A, 20.09.1977
Устройство и способ стабилизации излучения оптического разряда 2020
  • Соловьев Николай Германович
  • Шемякин Андрей Николаевич
  • Якимов Михаил Юрьевич
RU2734162C1
0
SU192588A1

RU 2 781 365 C1

Авторы

Соловьев Николай Германович

Котов Михаил Алтаевич

Шемякин Андрей Николаевич

Якимов Михаил Юрьевич

Даты

2022-10-11Публикация

2022-02-08Подача