Способ работы парогазовой установки электростанции Российский патент 2022 года по МПК F01K23/10 

Описание патента на изобретение RU2784165C1

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.

Известен аналог - способ работы парогазовой установки электростанции (см. патент РФ № 2738792, Б.И. 35, 2020), по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, в камеру сгорания газотурбинной установки подают органическое топливо, первичный воздух и обессоленную воду, в камере сгорания осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания и испарения обессоленной воды, продукты сгорания органического топлива и водяной пар перемешивают с вторичным воздухом, образовавшуюся газопаровую смесь направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газопаровой смеси и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшую в газовой турбине газопаровую смесь направляют в котел-утилизатор, где в процессе охлаждения газопаровой смеси генерируется водяной пар, водяной пар подают в паровую турбину, а уходящие газы отводят в теплообменник-утилизатор, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, в теплообменнике-утилизаторе в процессе теплообмена с циркуляционной водой осуществляют охлаждение уходящих газов ниже точки росы с конденсацией части содержащихся в них водяных паров, обессоленную воду, выделяющуюся при конденсации водяных паров из уходящих газов, через конденсатосборник с гидрозатвором направляют в бак-резервуар, из которого насосом по напорному водопроводу из нержавеющей стали подают в камеру сгорания газотурбинной установки, подогретую в конденсаторе и в теплообменнике-утилизаторе циркуляционную воду посредством циркуляционного насоса по сливному напорному трубопроводу подают в вытяжную башню градирни, где циркуляционная вода охлаждается атмосферным воздухом в процессе тепло- и массообмена при непосредственном контакте с ним и стекает в водосборный бассейн, уходящие газы после теплообменника-утилизатора отводят в атмосферу, в качестве органического топлива используют природный газ. Данный аналог принят за прототип.

К причине, препятствующей достижению указанного ниже технического результата при использовании известной парогазовой установки электростанции, принятой за прототип, относится то, что известная парогазовая установка электростанции обладает пониженной эффективностью работы, так как в камеру сгорания газотурбинной установки обессоленная вода, выделяющаяся в теплообменнике-утилизаторе из уходящих газов, подается при низкой температуре 32-35°С, равной температуре охлажденных в нем и отводимых в атмосферу уходящих газов. В теплообменнике-утилизаторе теплоты за счет подачи циркуляционной воды при температуре 25-28°С осуществляется процесс охлаждения уходящих газов до температуры 32-35°С, то есть ниже точки росы водяных паров в уходящих газах. Для энергетических газотурбинных установок, работающих на природном газе с коэффициентами избытка воздуха α = 2,5-4,0, точка росы водяных паров в уходящих газах равна 45-38°С соответственно. Подача обессоленной воды в камеру сгорания газотурбинной установки при низкой температуре 32-35°С обусловливает понижение температуры в зоне горения, так как часть теплоты, выделяющейся при сгорании органического топлива, расходуется на подогрев и испарение обессоленной воды, что снижает эффективность работы парогазовой установки электростанции.

Сущность изобретения заключается в следующем. Для повышения эффективности работы парогазовой установки электростанции целесообразно осуществлять подогрев подаваемой в камеру сгорания газотурбинной установки обессоленной воды. Для этого предлагается в парогазовой установке электростанции установить выполненный из нержавеющей стали рекуперативный теплообменник, который разместить в газоходе после котла-утилизатора перед теплообменником-утилизатором, и байпасный газоход рекуперативного теплообменника с регулирующим органом. В рекуперативном теплообменнике необходимо потоком уходящих газов с их охлаждением от 100-110°С до температуры 50-55°С, превышающей точку росы 38-45°С на 10-12°С, осуществлять подогрев до температуры 90-100°С направляемой в камеру сгорания газотурбинной установки обессоленной воды, выделяющейся в теплообменнике-утилизаторе из уходящих газов при температуре 32-35°С, при этом изменение расхода уходящих газов, направляемых в рекуперативный теплообменник, осуществлять регулирующим органом, установленным в байпасном газоходе рекуперативного теплообменника. Подача подогретой до температуры 90-100°С обессоленной воды в камеру сгорания газотурбинной установки обусловливает повышение температуры в зоне горения и эффективность работы газотурбинной установки вследствие снижения расхода теплоты, выделяющейся при сгорании органического топлива, на подогрев и испарение обессоленной воды.

Технический результат - повышение эффективности работы парогазовой установки электростанции.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе работы парогазовой установки электростанции, по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, в камеру сгорания газотурбинной установки подают органическое топливо, первичный воздух и обессоленную воду, в камере сгорания осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания и испарения обессоленной воды, продукты сгорания органического топлива и водяной пар перемешивают с вторичным воздухом, образовавшуюся газопаровую смесь направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газопаровой смеси и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшую в газовой турбине газопаровую смесь направляют в котел-утилизатор, где в процессе охлаждения газопаровой смеси генерируется водяной пар, водяной пар подают в паровую турбину, а уходящие газы отводят в теплообменник-утилизатор, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, в теплообменнике-утилизаторе в процессе теплообмена с циркуляционной водой осуществляют охлаждение уходящих газов ниже точки росы с конденсацией части содержащихся в них водяных паров, обессоленную воду, выделяющуюся при конденсации водяных паров из уходящих газов, через конденсатосборник с гидрозатвором направляют в бак-резервуар, из которого насосом по напорному водопроводу из нержавеющей стали подают в камеру сгорания газотурбинной установки, подогретую в конденсаторе и в теплообменнике-утилизаторе циркуляционную воду посредством циркуляционного насоса по сливному напорному трубопроводу подают в вытяжную башню градирни, где циркуляционная вода охлаждается атмосферным воздухом в процессе тепло- и массообмена при непосредственном контакте с ним и стекает в водосборный бассейн, уходящие газы после теплообменника-утилизатора отводят в атмосферу, в качестве органического топлива используют природный газ, особенность заключается в том, что в газоходе после котла-утилизатора перед теплообменником-утилизатором дополнительно устанавливают, выполненный из нержавеющей стали, рекуперативный теплообменник и осуществляют подогрев в нем до температуры 90-100°С направляемой в камеру сгорания газотурбинной установки обессоленной воды, выделяющейся в теплообменнике-утилизаторе из уходящих газов при температуре 32-35°С, потоком уходящих газов с их охлаждением от 100-110°С до температуры 50-55°С, превышающей точку росы 38-45°С на 10-12°С, при этом изменение расхода уходящих газов, направляемых в рекуперативный теплообменник осуществляют регулирующим органом, установленным в байпасном газоходе рекуперативного теплообменника.

На чертеже представлена схема парогазовой установки электростанции, реализующая предлагаемый способ.

Парогазовая установка электростанции содержит газотурбинную установку, состоящую из турбокомпрессора 1, камеры сгорания 2, газовой турбины 3 и электрогенератора 4, котел-утилизатор 5, паротурбинную установку, состоящую из паровой турбины 6 с конденсатором 7, электрического генератора 8 и питательного насоса 9, рекуперативный теплообменник 10, теплообменник-утилизатор 11 теплоты уходящих газов, снабженный конденсатосборником 12 и гидрозатвором 13, систему оборотного водоснабжения, включающую циркуляционный насос 14, напорный трубопровод 15 к конденсатору 7 паровой турбины 6, трубопровод 16 подачи циркуляционной воды к теплообменнику-утилизатору 11 теплоты уходящих газов и сливной напорный трубопровод 17 к градирне, состоящей из вытяжной башни 18 и водосборного бассейна 19, выполненные из нержавеющей стали бак-резервуар 20, насос 21, напорный водопровод 22 к рекуперативному теплообменнику 10 и водопровод 23 к камере сгорания 2, регулирующий орган 24 установленный в байпасном газоходе 25 рекуперативного теплообменника 10.

Способ работы парогазовой установки электростанции реализуется следующим образом.

Атмосферный воздух подают в турбокомпрессор 1 газотурбинной установки, в котором повышают его давление до требуемого значения. Сжатый в турбокомпрессоре 1 воздух разделяют на первичный и вторичный. В камеру сгорания 2 подают органическое топливо и первичный воздух для осуществления процесса горения топлива. Одновременно в камеру сгорания 2 из бака-резервуара 20, выполненного из нержавеющей стали, насосом 21 по водопроводу 23 из нержавеющей стали подают подогретую в рекуперативном теплообменнике 10 до температуры 90-100°С обессоленную воду, выделяющуюся из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике-утилизаторе 11. При этом для осуществления распыления обессоленной воды в камере сгорания 2 газотурбинной установки давление, создаваемое насосом 21 в водопроводе 23 перед камерой сгорания, должно превышать давление сжатого в турбокомпрессоре 1 циклового воздуха на 0,4-0,5 МПа. В камере сгорания 2 осуществляется процесс горения органического топлива с образованием продуктов сгорания и испарения обессоленной воды.

Продукты сгорания органического топлива и водяной пар перемешиваются с вторичным воздухом, образовавшуюся газопаровую смесь направляют в газовую турбину 3. Перемешивание продуктов сгорания органического топлива и водяного пара с вторичным воздухом осуществляют для обеспечения требуемой температуры газопаровой смеси перед газовой турбиной 3.В газовой турбине 3 совершается работа газотурбинного цикла, которая затрачивается на привод турбокомпрессора 1 и электрогенератора 4. При этом работа, совершаемая газопаровой смесью в газовой турбине 3, будет больше по сравнению со случаем, когда рабочим телом является смесь продуктов сгорания с воздухом, за счет повышения располагаемого теплоперепада вследствие улучшения теплофизических свойств рабочего тела.

Отработавшую в газовой турбине 3 газопаровую смесь подают в котел-утилизатор 5, где генерируется водяной пар высоких параметров, который направляют в паровую турбину 6, а уходящие газы из котла-утилизатора 5 подают в рекуперативный теплообменник 10. В паровой турбине 6 в процессе расширения водяного пара совершается полезная работа паротурбинного цикла, затрачиваемая на привод электрического генератора 8. Отработавший в паровой турбине 6 водяной пар направляют в конденсатор 7. В конденсаторе 7 в процессе теплообмена с циркуляционной водой, подаваемой по напорному трубопроводу 15 циркуляционным насосом 14 из водосборного бассейна 19 градирни, отработавший в паровой турбине 6 водяной пар конденсируется. Конденсат отработавшего в паровой турбине 6водяного пара из конденсатора 7 питательным насосом 9 подают в котел-утилизатор 5.

В рекуперативном теплообменнике 10, установленном в газоходе после котла-утилизатора 5 перед теплообменником-утилизатором 11, осуществляется подогрев обессоленной воды до температуры 90-100°С потоком уходящих газов с их охлаждением от 100-110°С до температуры 55-50°С, превышающей точку росы 45-38°С на 10-12°С. В рекуперативном теплообменнике 10 процесс охлаждения уходящих газов осуществляется без конденсации находящихся в них водяных паров, при этом изменение расхода уходящих газов, направляемых в рекуперативный теплообменник 10, осуществляется регулирующим органом 24, установленным в байпасном газоходе 25 рекуперативного теплообменника 10.

После рекуперативного теплообменника 10 уходящие газы поступают в теплообменник-утилизатор 11, где охлаждаются до температуры 32-35°С в процессе теплообмена с циркуляционной водой, подаваемой в теплообменник-утилизатор 11 при температуре 25-28°С циркуляционным насосом 14 по трубопроводу 16 подачи циркуляционной воды. При этом водяной пар, содержащийся в уходящих газах в перегретом состоянии, конденсируется, образуется обессоленная вода. Обессоленную воду, выделяющуюся из уходящих газов в процессе их охлаждения ниже точки росы в теплообменнике-утилизаторе 11, отводят в конденсатосборник 12 и через гидрозатвор 13 направляют в бак-резервуар 20, которые выполняются из нержавеющей стали для сохранения чистоты обессоленной воды. Из бака-резервуара 20 обессоленную воду, насосом 21 по напорному водопроводу 22 из нержавеющей стали подают в рекуперативный теплообменник 10, где подогревают до температуры 90-100°С потоком уходящих газов, и по водопроводу 23 подают в камеру сгорания газотурбинной установки. Уходящие газы, охлажденные в теплообменнике-утилизаторе 11 до температуры 30-35°С, через дымовую трубу (не показана) отводят в атмосферу. Использование газопаровой смеси приводит к увеличению паропроизводительности котла-утилизатора 5 на 2-3% вследствие улучшения теплофизических свойств рабочего тела и дополнительно повышает количество обессоленной воды, получаемой в теплообменнике-утилизаторе 11 из уходящих газов.

Подогретую в конденсаторе 7 и в теплообменнике-утилизаторе 11 теплоты уходящих газов циркуляционную воду посредством циркуляционного насоса 14 по сливному напорному трубопроводу 17 подают в вытяжную башню 18 градирни, где циркуляционная вода охлаждается атмосферным воздухом в процессе тепло- и массообмена при непосредственном контакте с ним и стекает в водосборный бассейн 19.

Таким образом, снабжение парогазовой установки электростанции рекуперативным теплообменником, установленным в газоходе после котла-утилизатора перед теплообменником-утилизатором теплоты, и регулирующим органом, установленным в байпасном газоходе рекуперативного теплообменника, позволяет осуществлять подогрев до температуры 90-100°С направляемой в камеру сгорания газотурбинной установки обессоленной воды, выделяющейся в теплообменнике-утилизаторе теплоты из уходящих газов при их охлаждения ниже точки росы, что повышает эффективность работы парогазовой установки электростанции.

Похожие патенты RU2784165C1

название год авторы номер документа
Парогазовая установка электростанции 2022
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
RU2793046C1
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ ЭЛЕКТРОСТАНЦИИ 2021
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
RU2787627C1
Способ работы парогазовой установки электростанции 2023
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
RU2803822C1
Парогазовая установка электростанции 2021
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
  • Валеева Эльвира Фаридовна
RU2777999C1
Парогазовая установка электростанции 2023
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
RU2799696C1
Способ работы парогазовой установки электростанции 2022
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
RU2778195C1
Парогазовая установка электростанции 2019
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Демина Юлия Эрнестовна
RU2738792C1
Способ работы парогазовой установки электростанции 2022
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
  • Хусаинов Кирилл Русланович
RU2780597C1
ПАРОГАЗОВАЯ УСТАНОВКА ЭЛЕКТРОСТАНЦИИ 2011
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Сергеева Анастасия Сергеевна
  • Горланов Сергей Петрович
RU2482292C2
ПАРОГАЗОВАЯ УСТАНОВКА ЭЛЕКТРОСТАНЦИИ 2008
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Егоров Максим Александрович
RU2373403C1

Иллюстрации к изобретению RU 2 784 165 C1

Реферат патента 2022 года Способ работы парогазовой установки электростанции

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Технический результат - повышение эффективности работы парогазовой установки электростанции. Предлагается способ работы парогазовой установки электростанции, по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, в камеру сгорания газотурбинной установки подают органическое топливо, первичный воздух и обессоленную воду, в камере сгорания осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания и испарения обессоленной воды, продукты сгорания органического топлива и водяной пар перемешивают с вторичным воздухом, образовавшуюся газопаровую смесь направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газопаровой смеси и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшую в газовой турбине газопаровую смесь направляют в котел-утилизатор, где в процессе охлаждения газопаровой смеси генерируется водяной пар, водяной пар подают в паровую турбину, а уходящие газы отводят в теплообменник-утилизатор, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, в теплообменнике-утилизаторе в процессе теплообмена с циркуляционной водой осуществляют охлаждение уходящих газов ниже точки росы с конденсацией части содержащихся в них водяных паров, обессоленную воду, выделяющуюся при конденсации водяных паров из уходящих газов, через конденсатосборник с гидрозатвором направляют в бак-резервуар, из которого насосом по напорному водопроводу из нержавеющей стали подают в камеру сгорания газотурбинной установки, подогретую в конденсаторе и в теплообменнике-утилизаторе циркуляционную воду посредством циркуляционного насоса по сливному напорному трубопроводу подают в вытяжную башню градирни, где циркуляционная вода охлаждается атмосферным воздухом в процессе тепло- и массообмена при непосредственном контакте с ним и стекает в водосборный бассейн, уходящие газы после теплообменника-утилизатора отводят в атмосферу, в качестве органического топлива используют природный газ, при этом в газоходе после котла-утилизатора перед теплообменником-утилизатором дополнительно устанавливают выполненный из нержавеющей стали рекуперативный теплообменник и осуществляют подогрев в нем до температуры 90-100°С направляемой в камеру сгорания газотурбинной установки обессоленной воды, выделяющейся в теплообменнике-утилизаторе из уходящих газов при температуре 32-35°С, потоком уходящих газов с их охлаждением от 100-110°С до температуры 50-55°С, превышающей точку росы 38-45°С на 10-12°С, при этом изменение расхода уходящих газов, направляемых в рекуперативный теплообменник, осуществляют регулирующим органом, установленным в байпасном газоходе рекуперативного теплообменника. 1 ил.

Формула изобретения RU 2 784 165 C1

Способ работы парогазовой установки электростанции, по которому атмосферный воздух подают в турбокомпрессор газотурбинной установки, где он сжимается до требуемого давления, сжатый в турбокомпрессоре воздух разделяют на первичный и вторичный, в камеру сгорания газотурбинной установки подают органическое топливо, первичный воздух и обессоленную воду, в камере сгорания осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания и испарения обессоленной воды, продукты сгорания органического топлива и водяной пар перемешивают с вторичным воздухом, образовавшуюся газопаровую смесь направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газопаровой смеси и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшую в газовой турбине газопаровую смесь направляют в котел-утилизатор, где в процессе охлаждения газопаровой смеси генерируется водяной пар, водяной пар подают в паровую турбину, а уходящие газы отводят в теплообменник-утилизатор, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паросилового цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, в теплообменнике-утилизаторе в процессе теплообмена с циркуляционной водой осуществляют охлаждение уходящих газов ниже точки росы с конденсацией части содержащихся в них водяных паров, обессоленную воду, выделяющуюся при конденсации водяных паров из уходящих газов, через конденсатосборник с гидрозатвором направляют в бак-резервуар, из которого насосом по напорному водопроводу из нержавеющей стали подают в камеру сгорания газотурбинной установки, подогретую в конденсаторе и в теплообменнике-утилизаторе циркуляционную воду посредством циркуляционного насоса по сливному напорному трубопроводу подают в вытяжную башню градирни, где циркуляционная вода охлаждается атмосферным воздухом в процессе тепло- и массообмена при непосредственном контакте с ним и стекает в водосборный бассейн, уходящие газы после теплообменника-утилизатора отводят в атмосферу, в качестве органического топлива используют природный газ, отличающийся тем, что в газоходе после котла-утилизатора перед теплообменником-утилизатором дополнительно устанавливают выполненный из нержавеющей стали рекуперативный теплообменник и осуществляют подогрев в нем до температуры 90–100 °С направляемой в камеру сгорания газотурбинной установки обессоленной воды, выделяющейся в теплообменнике-утилизаторе из уходящих газов при температуре 32–35 °С, потоком уходящих газов с их охлаждением от 100–110 °С до температуры 50–55 °С, превышающей точку росы 38–45°С на 10–12 °С, при этом изменение расхода уходящих газов, направляемых в рекуперативный теплообменник, осуществляют регулирующим органом, установленным в байпасном газоходе рекуперативного теплообменника.

Документы, цитированные в отчете о поиске Патент 2022 года RU2784165C1

Парогазовая установка электростанции 2019
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Демина Юлия Эрнестовна
RU2738792C1
ПАРОГАЗОВАЯ УСТАНОВКА ЭЛЕКТРОСТАНЦИИ 2008
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Егоров Максим Александрович
RU2373403C1
ПАРОГАЗОВАЯ УСТАНОВКА ЭЛЕКТРОСТАНЦИИ 2010
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Горланов Сергей Петрович
RU2453712C2

RU 2 784 165 C1

Авторы

Кудинов Анатолий Александрович

Зиганшина Светлана Камиловна

Кудинов Евгений Анатольевич

Даты

2022-11-23Публикация

2022-10-07Подача