СПОСОБ ФОРМИРОВАНИЯ И НАВЕДЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ИЗЛУЧАТЕЛЕЙ С ОПТОВОЛОКОННЫМИ ВЫВОДАМИ НА ЦЕЛЬ Российский патент 2022 года по МПК G01S17/88 

Описание патента на изобретение RU2784602C1

Изобретение относится к оптико-электронному приборостроению и может использоваться при разработке лазерных комплексов в части формирования и наведения лазерного излучения на удаленные цели.

Известен способ формирования и наведения лазерного излучения n-излучателей на цель в [1], включающий формирование зондирующего излучения и облучение им зоны предполагаемого расположения цели, поиск и грубое наведение зондирующего излучения на цель, прием отраженного от цели блика и построение изображения цели, точное наведение, формирование выходного пучка n-излучателей и фокусировку лазерного излучения n-излучателей на цель. Предложенный способ не позволяет формировать на выходе пучок дифракционного качества даже при использовании одномодовых волоконных лазеров. Также к недостаткам можно отнести:

- не высокую плотность излучения на цели из-за отсутствия системы формирования каждого излучателя; фокусировки и наведения суммарного излучения n-излучателей на цель общей телескопической системой формирования;

- из-за ухудшения качества излучения каждого излучателя при прохождении через светоделительный элемент, установленный под углом к оптической оси;

- большие лучевые нагрузки на окуляре телескопа из-за близкого его расположения к торцу излучающего тела излучателя;

- громоздкость конструкции, т.к. телескоп объединяет все излучатели и выходная апертура телескопа

- сложность замены отдельных лазерных модулей при выходе их из строя или падении их мощности.

Известен способ формирования и наведения лазерного излучения на цель [2], включающий формирование лазерного излучения 4-х излучателей короткофокусными коллиматорами, наведение каждого излучателя на цель поворотными плоскими зеркалами, установленными за каждым коллиматором, компенсацию фокусного расстояния коллиматора, вызванную тепловыми эффектами в формирующей оптике коллиматора, продольным перемещением окуляра двухкратного расширителя пучка. При использовании известного способа формирования и наведения излучения на цель существенными недостатками являются: широкая диаграмма направленности лазерного излучения из-за короткофокусности коллиматора - 250 мм, низкая точность наведения каждого излучателя на цель из-за отсутствия приемного канала и точного наведения; не высокая плотность излучения на цели из-за отсутствия фокусировки излучения на заданную дальность и широкой диаграммы направленности излучения излучателя.

Наиболее близким по технической сущности является способ формирования и наведения лазерного излучения n-излучателей на цель [3], включающий формирование зондирующего излучения и облучение им зоны предполагаемого расположения цели, поиск и грубое наведение зондирующего излучения на цель, прием отраженного от цели блика и построение изображения цели, измерение координат обнаруженных целей и дальности до них, формирование излучения каждого излучателя короткофокусным коллиматором в виде асферической линзы, сложение излучений каждого излучателя сумматором единичных лазерных пучков с установленными под углом 45° к оптической оси светоделительными элементами в виде дихроичных пластин, формирование необходимой диаграммы направленности суммарного лазерного излучения всех излучателей в зеркально - линзовым телескопе с внеосевым параболическим зеркальным объективом и подвижной асферической линзой окуляра, установленном на микропозиционере трехкоординатного блока сканирования, осуществляющего точное наведение и фокусировку суммарного излучения всех излучателей на цель. К недостаткам этого способа относятся:

- не эффективное формирование результирующего лазерного пучка;

- большое количество оптических поверхностей в оптической системе, погрешности которых сказываются на точности формируемого волнового фронта и точности наведения на цель;

- сложность и дороговизну изготовления асферической оптики для коллиматора и телескопической системы, сложность юстировки внеосевого параболического зеркала;

- не высокую плотность излучения на цели из-за фокусировки и наведения суммарного излучения всех излучателей на цель общей телескопической системой формирования;

- большие лучевые нагрузки на коллиматоре и окуляре телескопа из-за близкого расположения оптических элементов к торцу излучающего тела излучателя;

- дополнительное согласование приемного и передающего каналов из-за несоосного их расположения относительно друг друга.

Задачей изобретения является эффективное формирование дифракционного качества излучения, повышение точности наведения, увеличение плотности излучения на цели.

Поставленная задача решается тем, что в известном способе формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель, включающем поиск и грубое наведение на цель, формирование зондирующего излучения и облучение им зоны предполагаемого расположения цели, прием отраженного от цели блика, построение изображения и измерение координат цели в приемном блоке грубого наведения, грубое наведении на цель, прием отраженного от цели блика, построение изображения и измерение координат цели в приемном блоке точного наведения, точное наведение на цель, измерение дальности до цели и фокусировку излучения на нее, формирование излучения излучателей с оптоволоконными выводами заданной диаграммы направленности и фокусировку его на цель, для каждого излучателя с оптоволоконным выводом производят прием отраженных от цели бликов, построение изображения и измерение ее координат в приемном блоке точного наведения, точное наведение и фокусировку излучения на цель, формирование заданной диаграммы направленности излучения, при этом прием отраженного от цели блика, формирование излучения и формирование заданной диаграммы направленности осуществляют длиннофокусным коллиматором, в фокальной плоскости которого располагают торец сердцевины оптоволоконного вывода, приемное отраженное от цели зондирующее, излучение и наведенное на цель излучение каждого излучателя с оптоволоконным выводом разделяют светоделительным элементом.

На рисунке показана принципиальная оптическая схема для реализации предложенного способа, где: 1 - длиннофокусный коллиматор; 2 - излучатель с оптоволоконным выводом; 3 - торец сердцевины оптоволоконного вывода; 4 - устройство сканирования; 5 - приемный блок точного наведения; 6 - устройство фокусировки; 7 - светоделительный элемент; 8 - устройство зондирующего излучения; 9 - устройство грубого наведения; 10 - приемный блок грубого наведения; 11 - устройство дальномера; 12 - электронный блок управления и обработки.

Система формирования и наведения лазерного излучения излучателей на цель с помощью предлагаемого способа включает приемный и передающий каналы.

Приемный канал состоит из длиннофокусного коллиматора 1, светоделительного элемента 7 и приемного блока точного наведения 5 и предназначен для приема отраженных от цели бликов и построения изображения цели в приемном блоке точного наведения 5. Предметной плоскостью приемного канала является плоскость цели, плоскостью изображений - чувствительная площадка приемного блока 5.

Передающий канал состоит из длиннофокусного коллиматора 1; светоделительного элемента 7. Предметной плоскостью передающего канала является плоскость торца сердцевины 3 оптоволоконного вывода излучателя 2, плоскостью изображений - плоскость цели. Передающий канал предназначен для формирования заданной диаграммы направленности лазерного излучения излучателя с оптоволоконным выводом и фокусировки его на цель.

Приемный и передающий каналы оптически разделены светоделительным элементом 7.

Длиннофокусный коллиматор 1 предназначен для формирования излучения заданной диаграммы направленности и представляет собой двух или трех линзовую систему со стандартными сферическими поверхностями. Линзы располагаются на достаточно большом расстоянии от торца сердцевины оптоволоконного вывода, откуда выходит расходящееся мощное лазерное излучение, обеспечивая при этом сильное уменьшение лучевых нагрузок на оптические поверхности линз.

Излучатель 2 с оптоволоконным выводом предназначен для создания лазерного излучения. Торец сердцевины оптоволоконного вывода 3 располагают в фокальной плоскости коллиматора 1. При исходном положении оптической длины длиннофокусного коллиматора через него выходит пучок, сфокусированный на бесконечность и сфокусированный на заданную дальность при его изменении (увеличении).

Устройство сканирования 4 предназначено для точного наведения лазерного излучения на цель.

Приемный блок точного наведения 5 предназначен для приема отраженных от цели бликов и построения изображения цели на чувствительной площадке приемного блока.

Устройство фокусировки 6 предназначено для фокусировки лазерного излучения на цель.

Светоделительный элемент 7 предназначен для оптического разделения приемного и передающих каналов.

Устройство зондирующего излучения 8 и предназначено для создания зондирующего излучения и облучения им зоны предполагаемого расположения цели.

Устройство грубого наведения 9 может быть выполнено в виде опорно-поворотной платформы, на котором размещены устройства системы и предназначено для осуществления вращения по азимуту и наклону по углу места.

Приемный блок грубого наведения 10 предназначен для приема отраженных от цели бликов и построения изображения цели на чувствительной площадке приемного блока.

Устройство дальномера 11 предназначено для определения дальности до обнаруженных целей.

Электронный блок управления и обработки 12 предназначен для осуществления управления процессами формирования излучения, поиска целей, грубого и точного наведения и фокусировки излучения на цель, анализа и обработки полученных изображений.

Способ формирования и наведения лазерного излучения излучателей с оптоволоконным выводом на цель реализован следующим образом.

С электронного блока управления и обработки 12 подается командный сигнал на включение и функционирование устройства грубого наведения 9 и приемного блока грубого наведения 10. Осуществляется обзор местности, поиск целей вращением и наклоном опорно-поворотной платформы устройства грубого наведения 9 в рабочем диапазоне углов и построение изображений обнаруженных целей в приемном блоке грубого наведения 10. Полученная информация поступает в электронный блок управления и обработки 12 и производится анализ и обработка полученных изображений, определяется зона предполагаемого нахождения обнаруженной цели. Для определения уязвимого места обнаруженной цели подается команда с электронного блока управления и обработки 12 на зондирование этой местности зондирующим излучением и включается устройство зондирующего излучения 8.

Излучение устройства зондирующего излучения 8 производит зондирование пространства предполагаемого нахождения обнаруженной цели, отражается от цели и принимается приемным блоком грубого наведения 10. Сигналы о расположении обнаруженной цели с чувствительной площадки приемного блока грубого наведения 10 поступают в электронный блок управления и обработки 12, производится измерение координат обнаруженной цели. С электронного блока управления и обработки 12 подается командный сигнал на грубое наведение системы на цель. Вращением и наклоном опорно-поворотной платформы устройства грубого наведения 9 производится грубое наведение на цель, изображение цели подводят в центр приемного блока грубого наведения 10 с точностью грубого наведения, совпадающей или меньшей углового поля зрения устройства точного наведения. Система с точностью устройства грубого наведения наведена на обнаруженную цель, и цель попадает в поле зрения точного наведения.

Производится точное наведение. Отраженное от цели зондирующее излучение принимается системой длиннофокусного коллиматора 1 каждого излучателя, проходит через линзы каждого длиннофокусного коллиматора 1 и светоделительный элемент 7 и строит изображение цели в плоскости приемного блока точного наведения 5 в рабочем диапазоне углов поля зрения устройства точного наведения.

В электронный блок управления и обработки 12 с приемного блока точного наведения 5 поступают сигналы о расположении обнаруженной цели, производят измерение координат обнаруженной цели. С электронного блока управления и обработки 12 подается командный сигнал на включение устройства сканирования 4. Производится точное наведения системы на цель, изображение цели подводят в центр поля зрения приемного блока точного наведения 5 сканированием. Цель находится на оси приемного канала.

Поскольку предметной плоскостью приемного канала является плоскость цели и плоскостью изображений - плоскость приемного блока точного наведения, а предметной плоскостью передающего канала является плоскость торца сердцевины оптоволоконного вывода излучателя, откуда выходит единичный лазерный пучок и плоскостью изображений - плоскость цели, то когда система точно наведена на цель и изображение цели находится на оси приемного канала, то цель находится и на оси передающего канала, и выходное излучение каждого излучателя точно наведено на цель. И при этом обеспечивается сопряженность каждого торца сердцевины оптоволоконного вывода излучателя, откуда выходит лазерный пучок, и цели.

С электронного блока управления и обработки 12 подается командный сигнал на включение и функционирование устройства дальномера 11. Производится измерение дальности до цели. С электронного блока управления и обработки 12 подается командный сигнал на включение устройства фокусировки 6. Производится фокусировка каждого излучателя 2 на цель.

С электронного блока управления и обработки 12 подается управляющая команда на подачу электропитания каждому излучателю 2. Каждый излучатель начинает генерировать когерентные электромагнитные волны, передаваемые по своему оптоволоконному выводу, торец сердцевины которого 3 является источником излучения, откуда выходит единичный лазерный пучок.

Выходное лазерное излучение каждого излучателя, исходящее из торца сердцевины оптоволоконного вывода 3, проходит светоделительный элемент 7, сферические линзы длиннофокусного коллиматора 1, формируя излучение необходимой диаграммы направленности близкое к дифракционному качеству, и выходит сфокусированным на цель.

Выходное излучение каждого излучателя точно наведено и сфокусировано на цель.

В предложенном способе формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель введение для каждого излучателя своей раздельной оптической системы формирования и точного наведения излучения на цель и использование в качестве оптической системы приема отраженных от цели бликов, формирования излучения и формирования его заданной диаграммы направленности в виде длиннофокусного коллиматора из нескольких сферических линз, в фокальной плоскости которого расположен торец сердцевины оптоволоконного вывода, позволяют:

- эффективно сформировать дифракционного качества излучение, как каждого излучателя, так и суммарное излучение всех излучателей;

- повысить точность наведения лазерного излучения на цель за счет формирования дифракционного качества излучения в каждом излучателе, использования в каждом излучателе в виде длиннофокусного коллиматора системы формирования излучения, системы формирования заданной диаграммы направленности излучения и приема отраженного от цели бликов, точного наведения и фокусировки каждого излучателя на обнаруженную цель, упрощения юстировки и использования стандартной сферической оптики;

- увеличить плотность излучения на цели за счет формирования дифракционного качества излучения на выходе, как каждого излучателя, так и суммарного излучения всех излучателей, повышения точности наведения на обнаруженную цель.

Источники информации:

1. В.И. Кишко, В.Ф. Матюхин. Принципы построения адаптивных ретрансляторов для стратосферных систем передачи энергии // Автометрия. 2012.. Т. 48, №2. с. 59-66.

2. Sprangle, Phillip & Ting, А. & Penano, J.R. & Fischer, Richard & Hafizi, Bahman. (2008). Incoherent Combining of High-Power Fiber Lasers for Directed-Energy Applications. 2. 25.

3. Патент RU 2663121, опубликован 07.08.2018, бюл. №22, МПК: G01S 17/88 (2006.01), F41G 3/22 (2006.01) - прототип.

Похожие патенты RU2784602C1

название год авторы номер документа
СИСТЕМА ФОРМИРОВАНИЯ И НАВЕДЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ИЗЛУЧАТЕЛЕЙ С ОПТОВОЛОКОННЫМИ ВЫВОДАМИ НА ЦЕЛЬ 2022
  • Богатова Гюзель Абдулловна
  • Горобинский Александр Валерьевич
  • Жиган Игорь Платонович
  • Кузнецов Евгений Викторович
  • Митин Константин Владимирович
RU2793613C1
СИСТЕМА ФОРМИРОВАНИЯ И НАВЕДЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ИЗЛУЧАТЕЛЕЙ С ОПТОВОЛОКОННЫМИ ВЫВОДАМИ НА ЦЕЛЬ 2022
  • Богатова Гюзель Абдулловна
  • Горобинский Александр Валерьевич
  • Жиган Игорь Платонович
  • Кузнецов Евгений Викторович
  • Митин Константин Владимирович
RU2785768C1
СИСТЕМА ФОРМИРОВАНИЯ И НАВЕДЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ИЗЛУЧАТЕЛЯ С ОПТОВОЛОКОННЫМ ВЫВОДОМ НА ЦЕЛЬ 2023
  • Богатова Гюзель Абдулловна
  • Горобинский Александр Валерьевич
  • Жиган Игорь Платонович
  • Кузнецов Евгений Викторович
  • Митин Константин Владимирович
  • Шклярик Сергей Владимирович
RU2816822C1
Оптическая система формирования и наведения лазерного излучения 2016
  • Корнилов Владимир Александрович
  • Мацак Иван Сергеевич
  • Тугаенко Вячеслав Юрьевич
  • Сергеев Евгений Северович
RU2663121C1
Оптическая система дистанционной передачи энергии на базе мощных волоконных лазеров 2021
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2788422C1
Оптическая система формирования и наведения лазерного пучка 2019
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2715083C1
Оптическая система формирования и наведения лазерного излучения 2018
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2699944C1
СПОСОБ ФОРМИРОВАНИЯ И ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ИЗЛУЧАТЕЛЯ С ОПТОВОЛОКОННЫМ ВЫВОДОМ НА УДАЛЕННЫЙ ОБЪЕКТ 2023
  • Богатова Гюзель Абдулловна
  • Горобинский Александр Валерьевич
  • Жиган Игорь Платонович
  • Кузнецов Евгений Викторович
  • Митин Константин Владимирович
  • Попов Сергей Викторович
RU2814149C1
СПОСОБ ОБНАРУЖЕНИЯ ОПТИЧЕСКИХ И ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Богатова Гюзель Абдулловна
  • Герасимов Александр Анатольевич
  • Перебейнос Василий Васильевич
  • Питик Сергей Дмитриевич
  • Рузин Михаил Владимирович
RU2568336C2
Оптическая система формирования и наведения пучка лазерного излучения 2022
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2790198C1

Иллюстрации к изобретению RU 2 784 602 C1

Реферат патента 2022 года СПОСОБ ФОРМИРОВАНИЯ И НАВЕДЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ИЗЛУЧАТЕЛЕЙ С ОПТОВОЛОКОННЫМИ ВЫВОДАМИ НА ЦЕЛЬ

Изобретение относится к оптико-электронному приборостроению. Заявленный способ включает поиск и грубое наведение на цель, формирование зондирующего излучения и облучение им зоны предполагаемого расположения цели, прием каждым излучателем отраженного от цели блика, построение изображения и измерение координат цели в приемном блоке грубого наведения, точное наведение на цель, измерение дальности до цели и фокусировку излучения на нее, формирование излучения излучателей с оптоволоконными выводами заданной диаграммы направленности и фокусировку его на цель. При этом прием отраженного от цели блика, формирование излучения и формирование заданной диаграммы направленности осуществляют длиннофокусным коллиматором, в фокальной плоскости которого располагают торец сердцевины оптоволоконного вывода. Отраженное от цели зондирующее излучение и наведенное на цель излучение излучателя с оптоволоконным выводом разделяют светоделительным элементом. Техническим результатом заявленного изобретения является эффективное формирование дифракционного качества излучения, повышение точности наведения и увеличение плотности излучения на цели. 1 ил.

Формула изобретения RU 2 784 602 C1

Способ формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель, включающий поиск и грубое наведение на цель, формирование зондирующего излучения и облучение им зоны предполагаемого расположения цели, прием отраженного от цели блика, построение изображения и измерение координат цели в приемном блоке грубого наведения, грубое наведение на цель, прием отраженного от цели блика, построение изображения и измерение координат цели в приемном блоке точного наведения, точное наведение на цель, измерение дальности до цели и фокусировку излучения на нее, формирование излучения излучателей с оптоволоконными выводами заданной диаграммы направленности и фокусировку его на цель, отличающийся тем, что для каждого излучателя с оптоволоконным выводом производят прием отраженных от цели бликов, построение изображения и измерение ее координат в приемном блоке точного наведения, точное наведение и фокусировку излучения на цель, формирование заданной диаграммы направленности излучения, при этом прием отраженного от цели блика, формирование излучения и формирование заданной диаграммы направленности осуществляют длиннофокусным коллиматором, в фокальной плоскости которого располагают торец сердцевины оптоволоконного вывода, приемное отраженное от цели зондирующее излучение и наведенное на цель излучение каждого излучателя с оптоволоконным выводом разделяют светоделительным элементом.

Документы, цитированные в отчете о поиске Патент 2022 года RU2784602C1

Оптическая система формирования и наведения лазерного пучка 2019
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2715083C1
ОПТИКО-ЭЛЕКТРОННАЯ ПРИЦЕЛЬНАЯ СИСТЕМА 2008
  • Востриков Гаврил Николаевич
  • Ермолаев Валерий Дмитриевич
  • Карпов Семен Николаевич
  • Левшин Виктор Львович
  • Максин Сергей Валерьевич
  • Медведев Владимир Викторович
  • Панкин Андрей Евгеньевич
  • Ракович Николай Степанович
  • Суслин Константин Викторович
  • Трейнер Игорь Леонидович
RU2396573C2
Оптическая система формирования и наведения лазерного излучения 2018
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2699944C1
WO 2014036628 A1, 13.03.2014
WO 2021127312 A1, 24.06.2021.

RU 2 784 602 C1

Авторы

Богатова Гюзель Абдулловна

Горобинский Александр Валерьевич

Жиган Игорь Платонович

Кузнецов Евгений Викторович

Митин Константин Владимирович

Даты

2022-11-28Публикация

2022-03-16Подача