Устройство для стабилизации мерзлых грунтов Российский патент 2023 года по МПК E02D3/115 

Описание патента на изобретение RU2794616C1

Изобретение относится к области строительства, а именно к устройствам для охлаждения и замораживания грунта, используемым при строительстве инженерных сооружений, возводимых в районах вечной мерзлоты для аккумуляции холода в основании сооружений.

Известно устройство для стабилизации пластично-мерзлых грунтов с круглогодичным режимом работы для аккумуляции холода в основании сооружений, включающее подземную и надземную части трубчатого герметичного корпуса, заполненного хладагентом, подземная часть которого является испарителем, а надземная - конденсатором, снабженным полкой, имеющей расположенные на ее поверхности термоэлектрические модули в виде батареи элементов Пельтье, устройство снабжено тепловой трубой, один конец которой, имеющий полку, присоединен к горячей поверхности термоэлектрических модулей, а другой конец, являющийся зоной конденсации, имеет ребристую поверхность, причем ось зоны конденсации расположена под углом ϕ наклона к горизонту (RU 2405889, 2009 г.).

Известное устройство предусматривает включение и отключение термоэлектрических модулей, соответственно, в теплый и холодный периоды года.

К недостаткам известного устройства относятся необходимость наличия постоянного внешнего источника электроэнергии для питания термоэлектрических модулей.

Низкая эффективность теплопередачи в зимний период при работе с отключенными модулями Пельтье из-за отсутствия оребрения конденсатора.

Из известных технических решений наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является стабилизатор для пластично-мерзлых грунтов с круглогодичным режимом работы для аккумуляции холода в основании инженерных сооружений, включающий подземную и надземную части трубчатого герметичного корпуса, заполненного хладоагентом, подземная часть которого является испарителем, а надземная - конденсатором, имеющим термоэлектрические модули в виде батареи элементов Пельтье, при этом конденсатор снабжен П-образным стаканом, изготовленным из теплопроводного материала, внутренняя поверхность которого имеет конфигурацию, соответствующую конфигурации наружной поверхности конденсатора, и указанный стакан установлен на верхнюю часть конденсатора с возможностью вертикального перемещения и фиксации, а термоэлектрические модули расположены на наружной поверхности П-образного стакана (RU 2231595, 2002 г.)

Описанное устройство также предусматривает включение и отключение термоэлектрических модулей, соответственно, в теплый и холодный периоды года.

При этом стабилизатор устанавливается стационарно в основании инженерных сооружений с круглогодичным режимом работы.

К недостаткам известного устройства относится необходимость наличия постоянного внешнего источника электроэнергии для питания термоэлектрических модулей.

Температура термоэлектрических модулей в летнее время поддерживается на постоянном значении и не предусмотрено ее изменение в зависимости от климатической температуры, следствием чего является неконтролируемые колебания температуры хладагента, что в свою очередь отражается на параметрах стабилизации грунтов, в частности, может вызвать размораживание грунта, его проседание и, соответственно, неустойчивость инженерных сооружений.

Кроме того, размещение батареи элементов Пельтье снаружи корпуса снижает эффективность генерации холода из-за контакта модулей с внешней средой за счет рассеивания тепла в атмосферу.

Технической проблемой, решаемой предлагаемым изобретением, является создание мобильного устройства для стабилизации мерзлых грунтов в летний период, работающего от альтернативного источника электроэнергии и обеспечивающего исключение неконтролируемых колебаний температуры хладагента.

Указанная техническая проблема решается тем, что устройство для стабилизации мерзлых грунтов содержит подземную и наземную части трубчатого герметичного корпуса, заполненного хладагентом, являющимися, соответственно, испарителем и конденсатором, при этом надземная часть трубчатого герметичного корпуса выполнена разъемной и состоит из стационарно установленного конденсатора, постоянно сообщающегося с испарителем, и съемного блока энергопитания и изменения температуры хладагента, выполненного в виде ветроэлектроустановки постоянного тока с вертикальной осью вращения, мачта которого установлена на П-образном цилиндрическом стакане, на открытом нижнем торце которого установлена регулируемая заслонка с обеспечением возможности периодического размещения в его полости конденсатора, причем в полости съемного цилиндрического стакана размещены термоэлектрические модули в виде батареи элементов Пельтье и установленные равномерно по высоте стакана датчики температуры, при этом подключенный к генератору ветроэлектроустановки постоянного тока стабилизатор напряжения, являющийся выходным блоком ветроэлектроустановки, подключен к одному из входов микроконтроллера, к другому входу которого подсоединены выходы датчиков температуры, а его выход подсоединен к блоку питания элементов Пельтье для изменения величины тока и, соответственно, степени охлаждения хладагента в полости съемного П-образного цилиндрического стакана до достижения значения температуры, обеспечивающей стабилизацию работы испарительно- конденсационного цикла хладагента.

Достигаемый технический результат заключается в комплексировании использования мобильного альтернативного источника электроэнергии с одновременным регулированием температуры термоэлектрических модулей в зависимости от климатической температуры в реальном режиме времени и оптимизацией температуры хладагента с обеспечением сезонного использования стационарно установленных термосифонов.

Сущность устройства поясняется чертежами, где на фиг. 1 показан общий вид устройства в сборном состоянии, на фиг. 2 показан общий вид устройства в разборном состоянии со съемным блоком энергопитания и изменения температуры хладагента, на фиг. 3 приведена блок-схема регулирования температуры элементов Пельтье, на фиг. 4приведена схема монтажа -демонтажа съемного блока энергопитания и изменения температуры хладагента с надземной частью стабилизатора.

Предлагаемое устройство для стабилизации мерзлых грунтов содержит подземную 1 и надземную 2 части трубчатого герметичного корпуса 3, заполненного хладагентом, являющимися, соответственно, испарителем и конденсатором. Надземная часть 2 трубчатого герметичного корпуса 3 выполнена разъемной и состоит из стационарно установленного конденсатора 4, заполненного хладагентом, постоянно сообщающегося с испарителем 1, и съемного блока энергопитания и изменения температуры хладагента 5.

Съемный блока энергопитания и изменения температуры хладагента 5 выполнен в виде ветроэлектроустановки(ветрогенератора)постоянного тока с вертикальной осью вращения 6, мачта 7 которого установлена на П-образном цилиндрическом стакане 8, на открытом нижнем торце которого установлена регулируемая заслонка 9.

В полости съемного П-образного цилиндрического стакана 8 на его внутренней боковой поверхности размещены термоэлектрические модули в виде батареи элементов Пельтье 10, причем их горячая сторона прикреплена к поверхности стакана 8, а холодной стороной они обращены к его внутренней полости.

По высоте П-образного цилиндрического стакана 8 равномерно установлены датчики температуры 11.

Генератор 12 ветроэлектроустановки постоянного тока 6, подсоединен к стабилизатору напряжения 13, являющимся выходным блоком ветроэлектроустановки 6. Стабилизатор 13 подключен к одному из входов микроконтроллера 14, к другому входу которого подсоединены выходы датчиков температуры 11, а его выход подсоединен к блоку питания элементов Пельтье 10 (фиг. 3).

Предлагаемое устройство работает следующим образом.

В теплый период года, когда среднесуточная температура воздуха становится выше температуры грунта, на стационарно установленный конденсатор 4 термосифона, устанавливается съемный блок энергопитания и изменения температуры хладагента 5.

Регулируемая заслонка 9 закрывается и образуется замкнутая надземная часть, в которой с помощью элементом Пельтье 10 поддерживается отрицательная температура.

Под воздействием естественного потока ветра ветрогенератор постоянного тока с вертикальной осью вращения 6 начинает вырабатывать электроэнергию. Стабилизатор напряжения 13, подключенный к генератору 12 ветроэлектроустановки, через микроконтроллер 14 подает питание на элементы Пельтье 10. Микроконтроллер 14 формирует сигнал для изменения температуры элементов Пельтье 10 по критерию минимизации текущей температуры в реальном режиме времени.

Понижение температуры внутри съемного блока энергопитания и изменения температуры хладагента 5 обеспечивает работу испарительно-конденсационного цикла хладагента и понижение температуры испарителя 1 и прилегающих к нему слоев грунта. Тепло, выделяющееся на горячей поверхности термоэлектрических модулей 10, передается на цилиндрического стакана 8 и с него рассеивается в окружающую среду.

Охлажденный термоэлектрическими модулями 10 хладагент в конденсаторе 4конденсируется на внутренних поверхностях, под действием силы тяжести хладагент опускается вдоль стенок испарителя, нагревается за счет отбора тепла окружающего грунта и испаряется, поднимаясь в конденсатор 4. Происходит естественная циркуляция, охлаждение и замораживание массива грунта.

Таким образом, изменение температуры в полости П-образного цилиндрического стакана 8 происходит за счет изменения температуры, формируемой по заданному значению от микроконтроллера 14, который формирует сигнал с коррекцией по значению средней температуры от датчиков температуры 11.

Происходит изменение величины тока и, соответственно, степени охлаждения элементов Пельтье 10, которые в свою очередь охлаждают полость съемного П-образного цилиндрического стакана до достижения значения температуры, обеспечивающей стабилизацию работы испарительно-конденсационного цикла хладагента, т.е. до достижения температуры конденсатора ниже, чем температура мерзлого грунта.

На внешней боковой поверхности корпуса П-образного цилиндрического стакана 8 может быть установлена терморубашка (на фиг. не показана), выполненная в виде оребрения и предназначенная для повышения эффективности теплоотвода с поверхности стакана 8.

В холодный период года, когда среднесуточная температура воздуха ниже температуры грунта, съемный блок энергопитания и изменения температуры хладагента 5 снимают с конденсатора 2 и устройство функционирует без термоэлектрических модулей 10 за счет естественного холода окружающей среды.

Монтаж и демонтаж съемного блока энергопитания и изменения температуры хладагента 5 производят с использованием средств малой механизации таким образом, чтобы не повредить оребрение конденсатора 2 (фиг. 4).

Предлагаемое изобретение позволяет повысить эффективность работы эксплуатируемых сезонно действующих охлаждающих устройств (термосифонов) в летний период (период с температурой окружающего воздуха выше, чем температура мерзлого грунта) без внесения в конструкцию термосифонов изменений и необходимости устройства постоянно действующих систем подачи и охлаждения хладагента.

Предлагаемое устройство обеспечивает возможность сезонного применения в летний период для любых термосифонов, уже находящихся в эксплуатации, с различными конструктивными решениями конденсаторов. В осенний период устройство снимается с термосифона, и на протяжении зимнего периода термосифон продолжает функционировать в обычном режиме, при этом отсутствует необходимость внесения изменений в конструкцию термосифона.

Благодаря применению индивидуального источника энергии - ветрогенератора с вертикальной осью отсутствует необходимость в централизованном электроснабжении. Замена постоянного источника питания обусловлена тем, что существующие термосифоны устроены в местах без постоянного электроснабжения.

Похожие патенты RU2794616C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ МЕРЗЛОГО ГРУНТА СВАЙНОГО ФУНДАМЕНТА С ОБСАДНЫМИ ТРУБАМИ 2018
  • Климов Алексей Сергеевич
  • Амельчугов Сергей Петрович
  • Инжутов Иван Семенович
  • Клиндух Надежда Юрьевна
RU2681161C1
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ ПЛАСТИЧНО-МЕРЗЛЫХ ГРУНТОВ С КРУГЛОГОДИЧНЫМ РЕЖИМОМ РАБОТЫ 2009
  • Герасимов Сергей Вячеславович
  • Герасимова Мария Кирилловна
  • Штефанова Ольга Юрьевна
  • Штефанов Юрий Павлович
RU2405889C1
СТАБИЛИЗАТОР ДЛЯ ПЛАСТИЧНО-МЕРЗЛЫХ ГРУНТОВ С КРУГЛОГОДИЧНЫМ РЕЖИМОМ РАБОТЫ 2002
  • Минкин М.А.
  • Гвоздик В.И.
  • Мощенко В.И.
  • Стругов А.М.
RU2231595C1
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ПЛАСТИЧНО-МЕРЗЛЫХ ГРУНТОВ 2021
  • Махно Даниил Андреевич
  • Агиней Руслан Викторович
  • Белоусов Артём Евгеньевич
  • Пужайло Александр Федорович
RU2755770C1
УСТРОЙСТВО ДЛЯ ТЕПЛОИЗОЛЯЦИИ СКВАЖИНЫ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ 2012
  • Колосов Виктор Владимирович
  • Бирих Руслан Александрович
  • Павлова Прасковья Леонидовна
  • Лунев Александр Сергеевич
RU2500880C1
УСТРОЙСТВО ДЛЯ АККУМУЛЯЦИИ ХОЛОДА В ОСНОВАНИИ СООРУЖЕНИЙ 1999
  • Березин А.В.
  • Мельшанов А.Ф.
  • Клемяшов А.Г.
  • Баясан Р.М.
  • Коротченко А.Г.
  • Жигулев В.А.
  • Федоров М.С.
RU2145989C1
ОХЛАЖДАЮЩИЙ ТЕРМОСИФОН ДЛЯ ГЛУБИННОЙ ТЕРМОСТАБИЛИЗАЦИИ ГРУНТОВ (ВАРИАНТЫ) 2016
  • Рило Илья Павлович
RU2629281C1
ТЕПЛОВОЙ АККУМУЛЯТОР 2007
  • Ермаков Сергей Анатольевич
RU2359183C1
УСТРОЙСТВО ДЛЯ ТЕМПЕРАТУРНОЙ ТЕРМОСТАБИЛИЗАЦИИ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ 2014
  • Лисин Юрий Викторович
  • Ревель-Муроз Павел Александрович
  • Суриков Виталий Иванович
  • Петелин Александр Николаевич
  • Михеев Юрий Борисович
  • Лахаев Сергей Васильевич
RU2556591C1
СПОСОБ КОМБИНИРОВАННОЙ КРУГЛОГОДИЧНОЙ ТЕМПЕРАТУРНОЙ СТАБИЛИЗАЦИИ ГРУНТА 2021
  • Лаврик Александр Юрьевич
  • Буслаев Георгий Викторович
  • Двойников Михаил Владимирович
  • Жуковский Юрий Леонидович
RU2761790C1

Иллюстрации к изобретению RU 2 794 616 C1

Реферат патента 2023 года Устройство для стабилизации мерзлых грунтов

Изобретение относится к области строительства, а именно к устройствам для охлаждения и замораживания грунта, используемым при строительстве инженерных сооружений, возводимых в районах вечной мерзлоты для аккумуляции холода в основании сооружений. Технический результат заключается в комплексировании использования мобильного альтернативного источника электроэнергии с одновременным регулированием температуры термоэлектрических модулей в зависимости от климатической температуры в реальном режиме времени и оптимизацией температуры хладагента с обеспечением сезонного использования стационарно установленных термосифонов. Технический результат достигается тем, что устройство для стабилизации мерзлых грунтов содержит подземную и наземную части трубчатого герметичного корпуса, заполненного хладагентом, являющиеся, соответственно, испарителем и конденсатором, при этом надземная часть трубчатого герметичного корпуса выполнена разъемной и состоит из стационарно установленного конденсатора, постоянно сообщающегося с испарителем, и съемного блока энергопитания и изменения температуры хладагента, выполненного в виде ветроэлектроустановки постоянного тока с вертикальной осью вращения, мачта которого установлена на П-образном цилиндрическом стакане, на открытом нижнем торце которого установлена регулируемая заслонка с обеспечением возможности периодического размещения в его полости конденсатора, причем в полости съемного цилиндрического стакана размещены термоэлектрические модули в виде батареи элементов Пельтье и установленные равномерно по высоте стакана датчики температуры, при этом подключенный к генератору ветроэлектроустановки постоянного тока стабилизатор напряжения, являющийся выходным блоком ветроэлектроустановки, подключен к одному из входов микроконтроллера, к другому входу которого подсоединены выходы датчиков температуры, а его выход подсоединен к блоку питания элементов Пельтье для изменения величины тока и, соответственно, степени охлаждения хладагента в полости съемного П-образного цилиндрического стакана до достижения значения температуры, обеспечивающей стабилизацию работы испарительно-конденсационного цикла хладагента. 4 ил.

Формула изобретения RU 2 794 616 C1

Устройство для стабилизации мерзлых грунтов, характеризующееся тем, что оно содержит подземную и наземную части трубчатого герметичного корпуса, заполненного хладагентом, являющиеся, соответственно, испарителем и конденсатором, при этом надземная часть трубчатого герметичного корпуса выполнена разъемной и состоит из стационарно установленного конденсатора, постоянно сообщающегося с испарителем, и съемного блока энергопитания и изменения температуры хладагента, выполненного в виде ветроэлектроустановки постоянного тока с вертикальной осью вращения, мачта которого установлена на П-образном цилиндрическом стакане, на открытом нижнем торце которого установлена регулируемая заслонка с обеспечением возможности периодического размещения в его полости конденсатора, причем в полости съемного цилиндрического стакана размещены термоэлектрические модули в виде батареи элементов Пельтье и установленные равномерно по высоте стакана датчики температуры, при этом подключенный к генератору ветроэлектроустановки постоянного тока стабилизатор напряжения, являющийся выходным блоком ветроэлектроустановки, подключен к одному из входов микроконтроллера, к другому входу которого подсоединены выходы датчиков температуры, а его выход подсоединен к блоку питания элементов Пельтье для изменения величины тока и, соответственно, степени охлаждения хладагента в полости съемного П-образного цилиндрического стакана до достижения значения температуры, обеспечивающей стабилизацию работы испарительно-конденсационного цикла хладагента.

Документы, цитированные в отчете о поиске Патент 2023 года RU2794616C1

СТАБИЛИЗАТОР ДЛЯ ПЛАСТИЧНО-МЕРЗЛЫХ ГРУНТОВ С КРУГЛОГОДИЧНЫМ РЕЖИМОМ РАБОТЫ 2002
  • Минкин М.А.
  • Гвоздик В.И.
  • Мощенко В.И.
  • Стругов А.М.
RU2231595C1
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ МЕРЗЛОГО ГРУНТА СВАЙНОГО ФУНДАМЕНТА С ОБСАДНЫМИ ТРУБАМИ 2018
  • Климов Алексей Сергеевич
  • Амельчугов Сергей Петрович
  • Инжутов Иван Семенович
  • Клиндух Надежда Юрьевна
RU2681161C1
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ ПЛАСТИЧНО-МЕРЗЛЫХ ГРУНТОВ С КРУГЛОГОДИЧНЫМ РЕЖИМОМ РАБОТЫ 2009
  • Герасимов Сергей Вячеславович
  • Герасимова Мария Кирилловна
  • Штефанова Ольга Юрьевна
  • Штефанов Юрий Павлович
RU2405889C1
ТЕРМОСТАБИЛИЗАТОР ГРУНТОВ 2016
  • Вельчев Семен Петрович
  • Вельчев Андрей Семенович
  • Чанышев Ринат Риянович
RU2661167C2
DE 3112291 A1, 07.10.1982.

RU 2 794 616 C1

Авторы

Васильев Геннадий Германович

Сальников Антон Павлович

Леонович Игорь Александрович

Джалябов Антон Александрович

Даты

2023-04-24Публикация

2022-11-02Подача