Двухсистемная управляемая ракета в транспортно-пусковом контейнере Российский патент 2024 года по МПК F42B15/00 F41F3/00 

Описание патента на изобретение RU2814065C1

Двухсистемная управляемая ракета в транспортно-пусковом контейнере относится к области проектирования управляемых ракет и может быть использовано ракетных противотанковых комплексах.

Существует противотанковая управляемая ракета «Штурм» и ее модернизация - «Атака» в составе самоходного и вертолетного комплексов «Штурм-С» и «Штурм-В», размещаемых на боевой машине БМ 9П149 и на вертолетах Ми-24 и Ми-28 /см. «Управляемый снаряд 9М114. Техническое описание и инструкция по эксплуатации», Москва, Воениздат, 1982 г.; Ангельский Р.Д. Отечественные противотанковые комплексы. Иллюстрированный справочник. - М.: ACT, Астрель, с. 80, 146/. Бортовая аппаратура управления данной ракеты имеет одну систему управления, которая построена по принципу полуавтоматической радиокомандной системы управления. Недостатком данной ракеты является недостаточная дальность управляемого полета.

Существует ракетный комплекс «Хризантема», который обеспечивает практически одновременную стрельбу с одного носителя двумя ракетами по двум целям. Способ наведения, применяемый в этом комплексе / Ангельский Р.Д. Отечественные противотанковые комплексы. Иллюстрированный справочник. - М.: ACT, Астрель, с. 159, 160/, включает обнаружение и распознавание двух целей, автоматическое сопровождение первой цели, пуск первой ракеты с управлением по радиоканалу, полуавтоматическое сопровождение второй цели и пуск второй ракеты с управлением по лазерному лучу.

Ракетный комплекс, реализующий этот способ / Ангельский Р.Д. Отечественные противотанковые комплексы. Иллюстрированный справочник. - М.: ACT, Астрель, с. 159, 160/, включает две независимых системы наведения по радиоканалу и лазерному лучу, а также радиолокационную станцию обнаружения и автоматического сопровождения цели.

Недостатком данной ракеты является значительная дальность вывода ракеты на линию прицеливания и недостаточная дальность управляемого полета.

Наиболее близким по совокупности существенных признаков изобретением является управляемая ракета (Россия, патент №2518126, 25.09.2012 г.), имеющая возможность наведения либо по лазерному лучу, либо радиокомандным способом, и принятая за прототип.

Указанная ракета конструктивно состоит из: управляемой ракеты, отделяемого разгонного двигателя и транспортно - пускового контейнера (ТПК).

ТПК служит для предохранения ракеты от механических повреждений при эксплуатации (хранении, транспортировании) и является направляющим устройством при пуске ракеты.

Управляемая ракета (УР) в ТПК содержит боевую часть, рулевой отсек, разгонный двигатель, маршевый двигатель и аппаратурный отсек. Для создания необходимой подъемной силы служат четыре дугообразных крыла, а управляющая аэродинамическая сила создается при отклонении аэродинамических рулей. Для обеспечения запуска из ТПК управляемая ракета не имеет выступающих частей, рули и крылья сложены и раскрываются после вылета УР из транспортно - пускового контейнера.

УР электрически соединяется с ТПК бортразъемом, который расстыковывается в момент выстрела.

Для механической и электрической стыковки с носителем на ТПК имеются две цапфы. В передней цапфе размещен пиростопор для удержания УР, а в задней цапфе установлена плата для коммутации пусковых цепей ракеты с пусковыми цепями носителя (боевой машины, вертолета и т.д.).

Маршевый двухрежимный двигатель разгоняет ракету до сверхзвуковой скорости, а далее происходит пассивный полет с уменьшением скорости. Дальностью управляемого полета считается дальность, при которой располагаемая перегрузка, зависящая от скорости, достаточна как для компенсации силы тяжести, так и выбора ошибок наведения, т.е. в конце управляемого полета равна 1.2-1.4, при этом скорость достигает минимального значения Vmin.

Встреливание в луч таких УР с низкой начальной скоростью (менее 100 м/с) характеризуется их большими отклонениями на участке переходного процесса вследствие влияния начальных возмущений по угловой скорости продольной оси ракеты, ветра, ускорения от действия силы тяжести и других факторов, а также значительной длительностью переходного процесса (выхода ракеты на ось луча).

Таким образом, недостатком данной ракеты является значительная дальность вывода ракеты на линию прицеливания (ближняя зона стрельбы) и недостаточная дальность управляемого полета.

Для вертолета существенным является масса боеприпаса, чем он легче, тем больший боезапас можно иметь на борту. Поэтому при модернизации ракеты решается задача повышения тактико-технических характеристик при сохранении массы и габаритов нового изделия.

Целью предложения является повышение боевых возможностей вертолетного ракетного комплекса при стрельбе управляемыми ракетами с неподвижной пусковой установки (ПУ) за счет расширения зоны поражения целей при сохранении массы и габаритов новой ракеты.

Техническим результатом настоящего изобретения является увеличение дальности управляемого полета и сокращение ближней зоны стрельбы.

Для достижения указанного технического результата в предлагаемой ракете в транспортно-пусковом контейнере, содержащей отделяемый стартовый двигатель, двигательную установку, включающую разгонный и маршевый двигатели, блок запуска маршевого двигателя, боевую часть, рулевой отсек, блок бортовой радиоаппаратуры, фотоприемное устройство, блок цифровой обработки с дешифратором, вход которого связан с выходом фотоприемного устройства, гироскопический датчик крена, бортовой источник питания, бортовой разъем для электрического соединения цепей ракеты с носителем суммарный импульс тяги двигательной установки, включающей в себя разгонный двигатель и маршевый двигатель торцевого горения, распределяется следующим образом: в диапазоне (50-75)% приходится на разгонный двигатель и в диапазоне (25-50)% приходится на маршевый двигатель торцевого горения. Также, введен датчик угловых скоростей, блок цифровой обработки снабжен микроконтроллером, второй контакт бортового разъема связан с первым входом микро-контроллера, второй вход микроконтроллера связан с первым выходом блока бортовой радиоаппаратуры, выход гироскопического датчика крена связан с третьим входом микроконтроллера, выход датчика угловых скоростей связан с четвертым входом микроконтроллера, второй выход блока бортовой радиоаппаратуры связан с пятым входом микроконтроллера, выход дешифратора связан с микроконтроллером через шину данных, выход микроконтроллера связан с рулевым отсеком. При этом, блок запуска маршевого двигателя, содержит инерционный замыкатель с двумя контактами, соединяющимися под действием стартового ускорения, первый выход бортового источника питания подключен к первому контакту инерционного замыкателя, а ко второму выходу бортового источника питания подключен второй вход вторичного источника питания, первый вход вторичного источника питания соединен со вторым контактом инерционного замыкателя, а первый выход вторичного источника питания соединен с первыми входами реле времени, защитного реле и коммутационного реле, второй выход вторичного источника питания соединен со вторым входом реле времени, а выход реле времени соединен со вторым входом коммутационного реле, выход комутационного реле подключен к второму входу защитного реле, выход защитного реле подключен к электровоспламенителю маршевого двигателя.

Для сохранения габаритов ТПК и прежней массы ракеты масса топлива по сравнению с прототипом сокращается, используется разгонный двигатель, а в качестве маршевого используется двигатель торцевого горения с оптимальной тягой, обеспечивающий увеличенную максимальную дальность управляемого полета ракеты. Количество топлива и суммарный импульс тяги для сохранения общей массы и габаритов ракеты уменьшаются на 18%. Это позволяет увеличить максимальную дальность управляемого полета ракеты на 40% по сравнению с прототипом.

Запуск маршевого двигателя происходит после окончания работы разгонного и уменьшении скорости до 1.2-Vmin (это время составляет ~5.5 с), при этом сила тяги маршевого двигателя выбирается такой, чтобы поддерживать скорость полета на уровне 1.2-Vmin, для чего используется ракетный двигатель твердого топлива (РДТТ) торцевого горения. За время работы разгонного двигателя преодолевается 5% максимальной дальности, а за время пассивного полета до включения маршевого двигателя преодолевается еще 17% максимальной дальности.

Для сокращения ближней зоны стрельбы используется ДУС, позволяющий стабилизировать продольную ось ракеты и тем самым уменьшить отклонения ракеты на участке встреливания в луч и сократить длительность переходного процесса (выход ракеты на ось луча) («Проектирование зенитных управляемых ракет» под ред. Голубева И.С. и Светлова В.Г., М., издательство «МАИ», 2001 г., с. 370, 371, 374, 375).

На управляемой ракете имеется две системы управления: в лазерном луче и радиолуче. Наличие двух систем управления позволяет одновременное выполнение стрельбы по двум целям одновременно. При этом носитель может быть как двухсистемным, имеющим возможность наведения в лазерном и радио лучах, так и односистемным.

Система управления в лазерном луче представляет систему, при которой аппаратура, создающая информационное поле путем сканирования пространства лазерным лучом, располагается на носителе, а на УР находится фотоприемное устройство, воспринимающее лазерное излучение. Импульсы от засветки фотоприемного устройства поступают на дешифратор, определяющий координаты ракеты в информационном поле. Эти координаты поступают в бортовую систему управления ракеты.

Система управления в радиолуче представляет систему, при которой радиолокационная станция, создающая радиолуч, направленный на цель, располагается на пункте управления УР (Ю.П. Доброленский, В.И. Иванова, Г.С. Поспелов, Автоматика управляемых снарядов, М., Оборонгиз, 1963 г., с. 139-148), а на УР находится радиоприемное устройство (блок бортовой радиоаппаратуры) (Основы радиоуправления, под ред. Вейцеля В.А. и Типугина В.Н., М., Советское радио, 1973 г., с. 283, 294), воспринимающий сигналы радиолокационного передатчика пункта управления. Этот блок является измерительным устройством, определяющим величину и направление отклонения УР от оси равносигнального направления в системе координат, связанной с этим направлением. С выхода блока сигнал управления поступает в бортовую систему управления УР. При повороте рулей УР создается управляющая сила, возвращающая УР на ось равносигнального направления радиолуча. В результате УР будет двигаться по радиолучу.

Основными преимуществами систем управления по лучу являются большая дальность действия, сравнительная простота (меньшая сложность бортовой аппаратуры для создания управляющих сигналов).

Сущность заявляемого изобретения поясняется чертежом, где на фиг.1 приведена структурная схема двухсистемной управляемой ракеты.

На фиг.1 приняты следующие обозначения:

1 - бортовой разъем для связи электрических цепей ракеты с носителем;

2 - стартовый двигатель;

3 - боевая часть;

4 - разгонный двигатель;

5 - маршевый двигатель;

6 - блок запуска маршевого двигателя;

7 - гироскопический датчик крена (ГДК);

8 - датчик угловой скорости (ДУС);

9 - фотоприемное устройство (ФПУ);

10 - блок бортовой радиоаппаратуры (ББРА);

11 - блок цифровой обработки;

12 - микроконтроллер (МК);

13 - дешифратор;

14 - шина данных;

15 - рулевой отсек;

16 - первый вход МК;

17 - второй вход МК;

18 - третий вход МК;

19 - четвертый вход МК;

20 - пятый вход МК;

21 - выход МК;

22 - первый контакт бортового разъема;

23 - второй контакт бортового разъема.

Предлагаемая двухсистемная управляемая ракета в ТПК содержит бортовой разъем 1, стартовый двигатель 2, боевую часть 3, разгонный двигатель 4, маршевый двигатель 5, блок запуска маршевого двигателя 6, рулевой отсек 15, гироскопический датчик крена 7, ДУС 8, блок бортовой радиоаппаратуры 10, фотоприемное устройство 9, блок цифровой обработки 11 с дешифратором 13 лазерно-лучевой системы, при этом выход фотоприемного устройства 9 соединен с входом дешифратора 13 лазерно-лучевой системы. Блок цифровой обработки 11 снабжен микроконтроллером 12. Выход дешифратора 13 связан с микроконтроллером 12 через шину данных 14. Первый вход 16 микроконтроллера 12 связан со вторым контактом 23 бортового разъема 1. Для согласования уровней напряжений связь может быть осуществлена, например, через блок преобразования сигнала «Сход» в цифровую форму. Второй вход 17 микроконтроллера 12 связан с первым выходом ББРА 10 (сигнал «Тип системы»). Для согласования уровней напряжений связь может быть осуществлена, например, через блок преобразования сигнала «Тип системы» в цифровую форму. Третий вход 18 микроконтроллера 12 связан с гироскопическим датчиком крена 7.

Четвертый вход 19 микроконтроллера 12 связан с ДУС 8 через АЦП. Пятый вход 20 микроконтроллера 12 связан со вторым выходом ББРА 10.

Выход 21 микроконтроллера 12 связан с рулевым отсеком 15. Для согласования уровней напряжений связь может быть осуществлена, например, через схему формирования выходного сигнала микроконтроллера.

Ключом для выбора системы управления служит сигнал «Тип системы», поступающий с первого выхода ББРА 10 на второй вход 17 микроконтроллера 12.

Боевая часть 3 размещена в передней части УР и представляет собой автономный блок.

Двигательная установка ракеты включает разгонный и маршевый двигатели.

Маршевый двигатель 5 представляет собой однокамерный двигатель торцевого горения с двумя боковыми наклонными раструбами.

За маршевым двигателем расположен разгонный 4 однокамерный однорежимный двигатель твердого топлива с двумя боковыми наклонными раструбами.

За разгонным двигателем 4 расположен аппаратурный отсек, где размещены блок цифровой обработки 11, гироскопический датчик крена 7, ДУС 8, батареи электропитания (бортовой источник питания), фото приемное устройство 9 лазерного излучения, блок бортовой радиоаппаратуры 10 и рулевой отсек 15.

Стартовый двигатель 2 представляет собой однокамерный, однорежимный двигатель твердого топлива.

Фотоприемное устройство 9 можно выполнить, например, на базе фотодиода ФД342-03.

Блок бортовой радиоаппаратуры 10 может быть выполнен в соответствии с конструкцией (Основы радиоуправления, под ред. Вейцеля В.А. и Типугина В.Н., М., Советское радио, 1973 г., с. 283, 294).

Блок цифровой обработки 11 можно выполнить на базе микроконтроллера 1986 ВЕ92У (микроконтроллер 12) и микросхеме 5503БЦ7У (дешифратор 13).

Блок преобразования сигнала «Сход» в цифровую форму, преобразующий напряжение на контакте и его отсутствие в цифровые значения (1, 0), может быть выполнен на транзисторе 2Т3129А9 и защитном диоде 2Д707АС9 (фиг 2).

Блок преобразования сигнала «Тип системы» в цифровую форму может быть выполнен по схеме, изображенной на фиг.2.

Для защиты входных сигналов от ФПУ и ГДК используются блоки с однотипной схемой, изображенной на фиг.3. Диод 2Д707АС9 обеспечивает ограничение напряжения входного сигнала, резистор служит для ограничения тока.

Схема формирования выходного сигнала 21 микроконтроллера 12 может быть выполнена на микросхеме 5559ИН14АУ.

Для согласования аналоговых сигналов, поступающих от ББРА 10 и ДУС 8, используются усилители АЦП, которые могут быть выполнены на операционных усилителях 544УД16У3 (фиг.4).

Двухсистемная управляемая ракета в ТПК функционирует следующим образом.

Оператор на носителе выбирает конкретную УР и тип системы наведения, наводит прицел на цель и нажимает кнопку «Пуск».

По сигналу «Пуск», поступающему с носителя на первый контакт 22 бортового разъема 1, запускается бортовой источник питания 24, что приводит к инициализации блока цифровой обработки 11.

При выборе оператором системы наведения в радиолуче ББРА 10 принимает синхроимпульсы и формирует сигнал «Тип системы», равный 1, в случае отсутствия синхроимпульсов сигнал «Тип системы» равен 0. Сигнал «Тип системы» поступает на второй вход 17 микроконтроллера 12. Микроконтроллер 12 в зависимости от значения сигнала «Тип системы» переходит либо на прием сигналов от ББРА 10, либо на прием сигналов с дешифратора 13. Подается питание на боевую часть 3, необходимое для ее взведения. Запускается стартовый двигатель 2 ракеты, который предназначен для выброса ракеты из ТПК.

При отделении ракеты от ТПК происходит разрыв цепи «Сход», тем самым формируется сигнал «Сход» на втором контакте 23 бортового разъема 1. Сигнал «Сход» поступает на первый вход 16 микроконтроллера 12 и запускается отсчет времени, и происходит формирование сигналов управления рулевым приводом на траектории полета в соответствии с заложенной программой.

Разгонный двигатель 4 включается после выхода ракеты из ТПК аналогично прототипу (в прототипе этот двигатель называется маршевым). После включения разгонного двигателя происходит отделение стартового двигателя.

На первом этапе наведения продольная ось ракеты стабилизируется по информации с ДУС 8. На втором этапе наведения ракета управляется сигналами командно-лучевого телеуправления.

При управлении от сигнала угловой стабилизации продольной оси ракеты возмущающий момент, действующий на ракету в полете и обусловленный скоростью ветра, стартовыми возмущениями и т.д., компенсируется моментом управления.

При нахождении в информационном поле, созданным сканирующим лазерным лучом аппаратуры наведения носителя, происходит периодическая засветка фотоприемного устройства 9. С выхода фотоприемного устройства 9 сформированные им импульсы поступают на вход дешифратора 13, в которых по временным промежуткам между импульсами вычисляется отклонение ракеты от оси информационного поля. Для связи между микроконтроллером 12 и дешифратором 13 имеется шина данных 14, реализованная с использованием цифровых портов, обмен реализуется на программном уровне.

В случае выбора наведения в радиолуче ББРА 10 синхронизируется с передающей антенной по эфиру. При нахождении в радиолуче в ББРА 10 определяются отклонения от равносигнального направления, поступающие на пятый вход 20 микроконтроллера 12.

Формирование сигналов управления для рулевого отсека 15 осуществляется программным путем в микроконтроллере 12 с использованием сигнала от гироскопического датчика крена 7, поступающего на третий вход 18 микроконтроллера 12. Передача сигнала управления в рулевой отсек 15 осуществляется через выход 21 микроконтроллера 12.

Гироскопический датчик крена 7 необходим для того, чтобы вектор управляющих сил формировался в требуемом направлении в пространстве, при произвольном угле крена корпуса ракеты, к которому привязаны рули.

В рулевом отсеке 15 происходит отклонение рулей, возникает управляющая сила, которая приводит к уменьшению рассогласования ракеты с линией прицеливания и ракета движется по линии прицеливания, что обеспечивает попадание в цель. При попадании в цель срабатывает боевая часть 3 и происходит поражение цели.

Через заданное время после схода блок запуска 6 маршевого двигателя 5 подает питание на электровоспламенитель маршевого двигателя 5, и он начинает свою работу.

Структурная схема блока запуска 6 маршевого двигателя 5 приведена на фиг.5.

На фиг.5

24 - бортовой источник питания;

25 - инерционный замыкатель;

26 - вторичный источник питания;

27 - реле времени;

28 - коммутирующее реле;

29 - защитное реле;

30 - электровоспламенитель маршевого двигателя 5.

Блок запуска 6 маршевого двигателя 5 содержит инерционный замыкатель

25, вторичный источник питания 26, реле времени 27, коммутационное реле 28, защитное реле 29.

В исходном состоянии блок запуска 6 маршевого двигателя 5 отключен от бортового источника питания 24, а электровоспламенитель 30 маршевого двигателя 5 зашунтирован защитным реле 29, чем обеспечивается безопасность изделия при сборке, хранении и от воздействия электромагнитных полей в процесс эксплуатации.

При срабатывании стартового двигателя 2 (сход УР) инерционный замыкатель 25 обеспечивает подачу напряжения от бортового источника питания на вторичный источник питания 26, выполненный на DC/DC преобразователе типа МДМ6-1 В.

При этом происходит задействование вторичного источника питания

26, который подает напряжение на реле времени 27, коммутационное реле 28 и защитное реле 29.

Реле времени 27, выполненное на реле типа РДВ 11, обеспечивает задержку подачи питания на электровоспламенитель маршевого двигателя 5. После срабатывания реле времени 27 задействуется коммутационное реле 28 и разблокируется защитное реле 29.

Коммутационное реле 28 можно выполнить на микросборке 2М419А1.

Защитное реле 29 можно выполнить на микросборке 249 КП14АР.

Сигнал с выхода защитного реле 29 поступает на электровоспламенитель 30 маршевого двигателя 5 и происходит его задействование.

Приведенная конструкция блока запуска 6 маршевого двигателя 5 обеспечивает его надежное срабатывание в заданный момент времени.

Похожие патенты RU2814065C1

название год авторы номер документа
УПРАВЛЯЕМАЯ РАКЕТА В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ 2012
  • Кашин Валерий Михайлович
  • Коновалов Виктор Алексеевич
  • Питиков Сергей Викторович
  • Вуколов Александр Сергеевич
  • Васильев Георгий Владимирович
  • Лифиц Александр Львович
  • Прончев Юрий Васильевич
  • Дедешин Сергей Алексеевич
  • Грачиков Дмитрий Викторович
  • Рулев Алексей Игоревич
RU2518126C2
УПРАВЛЯЕМАЯ РАКЕТА 2005
  • Бутенко Алексей Иванович
  • Шумков Георгий Васильевич
  • Кушнир Эдуард Викторович
  • Аристархов Игорь Владимирович
  • Пальцев Михаил Витальевич
  • Галкин Виктор Николаевич
RU2292009C1
УПРАВЛЯЕМАЯ РАКЕТА 2005
  • Шумков Георгий Васильевич
  • Кушнир Эдуард Викторович
RU2272240C1
МНОГОЦЕЛЕВАЯ УПРАВЛЯЕМАЯ РАКЕТА В ПУСКОВОМ КОНТЕЙНЕРЕ 2004
  • Питиков Сергей Викторович
  • Гришин Валерий Васильевич
  • Кашин Валерий Михайлович
  • Вуколов Александр Сергеевич
  • Судариков Валерий Иванович
  • Батищев Константин Александрович
  • Скрябин Михаил Александрович
  • Рютин Валерий Борисович
  • Прончев Юрий Васильевич
  • Шляхов Валерий Павлович
RU2277693C1
СПОСОБ СТРЕЛЬБЫ ЗЕНИТНОЙ УПРАВЛЯЕМОЙ РАКЕТОЙ И РАКЕТА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2001
  • Шипунов А.Г.
  • Кузнецов В.М.
  • Швыкин Ю.С.
  • Соколов Г.Ф.
  • Морозов В.Д.
  • Родин Л.А.
  • Коликов В.А.
RU2191985C2
ПРОТИВОВОЗДУШНЫЙ АВТОНОМНЫЙ УНИВЕРСАЛЬНЫЙ КОМПЛЕКС САМООБОРОНЫ ПОДВОДНЫХ ЛОДОК ("ПАУК" СО ПЛ) И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2008
  • Клименко Владимир Владимирович
  • Прошкин Станислав Гаврилович
RU2382313C2
УПРАВЛЯЕМАЯ РАКЕТА 2005
  • Дудка Вячеслав Дмитриевич
  • Захаров Лев Григорьевич
  • Галкин Виктор Николаевич
  • Аристархов Игорь Владимирович
  • Пальцев Михаил Витальевич
RU2288437C1
Управляемая ракета 2022
  • Стаканов Николай Владимирович
  • Стаканов Александр Николаевич
  • Гундарев Владимир Владимирович
  • Виноградов Виталий Валерьевич
  • Бутымов Валерий Вячеславович
RU2772089C1
Способ управления пулей и управляемая пуля 2019
  • Гусев Андрей Викторович
  • Рындин Максим Владимирович
  • Погорельский Семен Львович
  • Матвеев Эдуард Львович
  • Хрипунов Лев Александрович
  • Забелин Павел Николаевич
  • Морозов Роман Владимирович
  • Дикшев Алексей Игоревич
  • Костяной Евгений Михайлович
  • Горин Антон Валерьевич
RU2719802C1
Управляемая пуля 2019
  • Гусев Андрей Викторович
  • Рындин Максим Владимирович
  • Шнырев Дмитрий Витальевич
  • Кирилин Владимир Валерьевич
  • Симаков Сергей Юрьевич
  • Недосекин Игорь Алексеевич
  • Леонова Елена Львовна
  • Болосов Дмитрий Александрович
  • Турков Руслан Содаткадамович
  • Забелин Павел Николаевич
RU2713831C1

Иллюстрации к изобретению RU 2 814 065 C1

Реферат патента 2024 года Двухсистемная управляемая ракета в транспортно-пусковом контейнере

Двухсистемная управляемая ракета в транспортно-пусковом контейнере содержит бортовой разъем, отделяемый стартовый двигатель, боевую часть, двигательную установку с разгонным и маршевым двигателями, блок запуска маршевого двигателя, гироскопический датчик крена, датчик угловых скоростей, фотоприемное устройство, блок бортовой радиоаппаратуры, бортовой источник питания, блок цифровой обработки, дешифратор, микроконтроллер, шину данных, рулевой отсек, соединенные определенным образом. Обеспечивается увеличение дальности управляемого полета и сокращение ближней зоны стрельбы. 5 ил.

Формула изобретения RU 2 814 065 C1

Двухсистемная управляемая ракета в транспортно-пусковом контейнере, содержащая отделяемый стартовый двигатель, двигательную установку, включающую разгонный и маршевый двигатели, блок запуска маршевого двигателя, боевую часть, рулевой отсек, блок бортовой радиоаппаратуры, фотоприемное устройство, блок цифровой обработки с дешифратором, вход которого связан с выходом фотоприемного устройства, гироскопический датчик крена, бортовой источник питания, бортовой разъем для электрического соединения цепей ракеты с носителем, отличающаяся тем, что суммарный импульс тяги двигательной установки распределяется следующим образом: в диапазоне 50-75% на разгонный двигатель и в диапазоне 25-50% на маршевый двигатель торцевого горения, а также введен датчик угловых скоростей, блок цифровой обработки снабжен микроконтроллером, второй контакт бортового разъема связан с первым входом микроконтроллера, второй вход микроконтроллера связан с первым выходом блока бортовой радиоаппаратуры, выход гироскопического датчика крена связан с третьим входом микроконтроллера, выход датчика угловых скоростей связан с четвертым входом микроконтроллера, второй выход блока бортовой радиоаппаратуры связан с пятым входом микроконтроллера, выход дешифратора связан с микроконтроллером через шину данных, выход микроконтроллера связан с рулевым отсеком, при этом блок запуска маршевого двигателя, содержит инерционный замыкатель с двумя контактами, соединяющимися под действием стартового ускорения, первый выход бортового источника питания подключен к первому контакту инерционного замыкателя, а ко второму выходу бортового источника питания подключен второй вход вторичного источника питания, первый вход вторичного источника питания соединен со вторым контактом инерционного замыкателя, а первый выход вторичного источника питания соединен с первыми входами реле времени, защитного реле и коммутационного реле, второй выход вторичного источника питания соединен со вторым входом реле времени, а выход реле времени соединен со вторым входом коммутационного реле, выход комутационного реле подключен к второму входу защитного реле, выход защитного реле подключен к электровоспламенителю маршевого двигателя.

Документы, цитированные в отчете о поиске Патент 2024 года RU2814065C1

Способ получения торцовых, несогласованных по термическому расширению спаев керамики с металлом 1958
  • Гликина С.Е.
  • Мацулевич М.В.
  • Турбин М.С.
SU124783A1
УПРАВЛЯЕМАЯ РАКЕТА В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ 2012
  • Кашин Валерий Михайлович
  • Коновалов Виктор Алексеевич
  • Питиков Сергей Викторович
  • Вуколов Александр Сергеевич
  • Васильев Георгий Владимирович
  • Лифиц Александр Львович
  • Прончев Юрий Васильевич
  • Дедешин Сергей Алексеевич
  • Грачиков Дмитрий Викторович
  • Рулев Алексей Игоревич
RU2518126C2
МНОГОЦЕЛЕВАЯ УПРАВЛЯЕМАЯ РАКЕТА В ПУСКОВОМ КОНТЕЙНЕРЕ 2004
  • Питиков Сергей Викторович
  • Гришин Валерий Васильевич
  • Кашин Валерий Михайлович
  • Вуколов Александр Сергеевич
  • Судариков Валерий Иванович
  • Батищев Константин Александрович
  • Скрябин Михаил Александрович
  • Рютин Валерий Борисович
  • Прончев Юрий Васильевич
  • Шляхов Валерий Павлович
RU2277693C1
US 6462322 B1, 08.10.2002
AU 3848195 A, 23.05.1996.

RU 2 814 065 C1

Авторы

Питиков Сергей Викторович

Кашин Валерий Михайлович

Васильев Георгий Владимирович

Смыслов Александр Викторович

Грачиков Дмитрий Викторович

Шмелев Андрей Олегович

Аверкиев Владимир Евгеньевич

Даты

2024-02-21Публикация

2023-09-04Подача