Изобретение относится к способу поддержания оптического разряда с целью получения широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях.
Известен способ-аналог поддержания оптического разряда (патент US 7435982 “Laser-driven light source”) заключающийся в облучении сфокусированным с помощью системы фокусировки лазерным излучением камеры, заполненной газовой средой высокого давления. Фактически приведенный способ представляет собой один из вариантов реализации явления непрерывного оптического разряда, обнаруженного в 1970 г. в СССР (Генералов Н.А., Зимаков В.П. и др. «Непрерывно горящий оптический разряд». Письма в ЖЭТФ, 1970, т. 11, с. 447-449).
Важно отметить, что в способе-аналоге яркость излучения увеличивается слабо по мере роста мощности используемого лазера, поскольку вместе с ростом мощности лазера увеличивается и объем излучающей плазмы, генерируемой лазером накачки. Например, при увеличении мощности лазера от 20 Вт (источник EQ-99, Hamamatsu Photonics) до 60 Вт (источник EQ-1500, Hamamatsu Photonics) размер излучающей плазмы по уровню 50% от максимальной яркости увеличивается от 60 мкм × 140 мкм до 125 мкм × 300 мкм, то есть объем плазмы возрастает в 9 раз. Это означает, что мощность энерговыделения в единице объема плазмы с увеличением мощности лазера даже уменьшается. При этом максимальная температура плазмы даже несколько снижается, а рост спектральной яркости достигается менее эффективным способом - за счет увеличения оптической толщины плазмы, в основном прозрачной для собственного теплового излучения. Кроме того, медленный рост яркости лазерной плазмы при увеличении лазерной мощности связан с рефракцией лазерного излучения в нагретом газе: с увеличением мощности лазерного излучения увеличивается и тепловыделение в фокальной области. В результате возрастает размер и оптическая сила «рассеивающей тепловой линзы», возникающей в области излучающей плазмы и вокруг этой области, что ухудшает условия фокусировки лазерного излучения.
Известен способ поддержания оптического разряда (RU157892 U1), принятый за прототип, заключающийся в облучении заполненной газовой средой высокого давления камеры, двумя сфокусированными лазерными лучами, полученными с помощью двух лазеров и двух систем фокусировки, причем угол между направлением излучения лазеров составляет не менее 60°.
Авторами прототипа обнаружено, что при возбуждении оптического разряда сфокусированным излучением двух лазеров с по существу совпадающими фокусами область высокой яркости такого разряда (например, по уровню 50% от максимальной яркости) сосредоточена вблизи области пересечения фокальных областей каждого из лучей и может быть существенно меньше, чем занимаемая плазмой область для каждого из лазерных лучей в отдельности. Как следствие, при достаточно большом угле θ между направлением оптических осей каждого из лазерных лучей, а именно при θ≥60° резко увеличивается стабильность положения области оптического разряда с максимальной яркостью, яркая область «совместной» плазмы оказывается значительно меньше размера яркой области плазмы, генерируемой каждым из используемых лазеров в отдельности, а яркость излучения плазмы оптического разряда IΣ значительно превосходит арифметическую сумму яркостей плазмы I1+I2, где I1, I2 - яркость плазмы в случае работы только одного лазера (соответственно, первого или второго).
Недостаток прототипа заключается в необходимости применения двух лазеров, а соответственно и двух систем фокусировки и управления излучением. Также, при отражении лазерного излучения от плазмы оптического разряда нежелательное излучение возвращается и причиняет вред выходу оптоволокна лазера, а в случае отсутствия блокиратора - и самому лазеру.
Существуют тонкопленочные поляризаторы Брюстера (http://vicon-se.ru/catalog/optika/polyarizacionnye_komponenty1/tonkij_polyarizator_bryustera/), представляющие собой разновидность оптических поляризаторов, основанных на интерференционных эффектах в многослойном диэлектрическом покрытии. Это покрытие обычно помещают на прозрачную пластину. Если угол падения составляет угол Брюстера, то достигается сильно зависящая от поляризации отражательная способность: s-поляризованный свет отражается, а p-поляризованный свет проходит насквозь. Таким образом легко избежать потерь на отражении проходящего света на задней стороне. Поскольку интерференционные эффекты в многослойном покрытии зависят от длины волны, тонкопленочный поляризатор может работать только в ограниченном диапазоне длин волн и углового диапазона. Такие поляризаторы оптимизируют под основные длины волн лазеров. Преимуществом тонкопленочных поляризаторов является то, что они могут быть выполнены достаточно больших размеров, что позволяет работать с лазерным излучением большой мощности.
Заявляемый способ поддержания оптического разряда направлен на устранение недостатков прототипа, а именно дает возможность реализовать двухлучевую схему поддержания оптического разряда с применением одного лазера и при этом позволяет отвести нежелательное отраженное излучение от лазера или выхода оптоволокна тем самым избегая причинения им вреда.
Указанный результат достигается тем, что в способе поддержания оптического разряда, заключающемся в поджиге оптического разряда, расположенного в разрядной камере, с помощью двух штыревых электродов, расположенных вблизи оптического разряда, между которыми прикладывают импульс пробойного напряжения, излучение лазера подают на тонкопленочный поляризатор под углом Брюстера, отраженный луч с s-поляризацией пропускают через соответствующую четвертьволновую пластинку отражают от двух зеркал и фокусируют в разрядном объеме, проходящий луч с p-поляризацией пропускают через соответствующую четвертьволновую пластинку фокусируют в разрядном объеме, отраженные от плазмы обратные лучи, отражают от двух зеркал, пропускают через четвертьволновые пластинки, направляют на тонкопленочный поляризатор и отводят в поглотитель излучения.
Указанный результат достигается также тем, что излучение лазера подают на поляризационный куб, направляют на поляризационный куб.
Сущность заявляемого изобретения поясняется примером его реализации и графическими материалами. На Фиг. 1 и Фиг. 2 представлена схема примера реализации заявляемого способа. На Фиг. 1 для наглядности показан ход лучей прямого лазерного излучения, а ход отраженных лучей не показан. На Фиг. 2, наоборот, для наглядности показан ход отраженных лучей, а ход лучей прямого лазерного излучения не показан.
Изобретение работает следующим образом. Лазерное неполяризованное излучение 1 лазера 2 подают на тонкопленочный поляризатор 3 под углом Брюстера. Тонкопленочный поляризатор 3 подбирают под длину волны лазера 2. Тонкопленочный поляризатор 3 пропускает луч 4, имеющий линейную p-поляризацию и отражает луч 5, имеющий линейную s-поляризацию. Лучи 4 и 5 пропускают через четвертьволновые пластинки 6 и 7. Четвертьволновые пластинки 6 и 7 подбирают под длину волны лазера 2. Четвертьволновые пластинки 6 и 7 располагают их медленными или быстрыми осями под углом 45 градусов к плоскости поляризации падающих лучшей 4 и 5. Таким образом, выходящие из них лучи 8 и 9 имеют круговую поляризацию. Луч 9 отражают от двух зеркал 10 для создания необходимого (более 60 градусов) угла между лучами 8 и 9. Лучи 8 и 9 фокусируют линзами 11 так, чтобы они пересекались внутри герметичной камеры 12, заполненной газовой смесью, способной пропускать как лазерное излучение для поджига и поддержания плазмы оптического разряда, так и широкополосное выходное излучение самого оптического разряда 13. Линзы 11 подбираются таким образом, чтобы пропускать излучение на длине волны лазера 2 и блокировать остальные диапазоны, для защиты оборудования от ультрафиолетового излучения плазмы оптического разряда 13. Для первоначального поджига оптического разряда 13 применяют два штыревых электрода (на фиг. 1, 2 не показаны), расположенных вблизи оптического разряда 13, между которыми прикладывают импульс пробойного напряжения либо внешний импульсный лазер (на фиг. 1, 2 не показан) излучение которого фокусируют на пересечении лучей 8 и 9, либо увеличением мощности используемого для оптического разряда 13 лазера 2. При этом на пересечении сфокусированных лучей 8 и 9 лазерного излучения образуется облако плазмы оптического разряда 13, интенсивно поглощающей лазерное излучение. Далее плазму оптического разряда 13 поддерживают за счет поглощения излучения лазера 2. Часть излучения лучей 8 и 9 отражается от плазмы оптического разряда 13 и возвращается в виде лучей 14 и 15, причем круговая поляризация при отражении сохраняется, а фаза при отражении от плазмы оптического разряда 13 (которая по сути является проводником), меняется на 180 градусов). При пропускании лучей 14 и 15 через четвертьволновые пластинки 6 и 7 их поляризация из круговой превращается в линейную, при этом луч 16 получает s-поляризацию, а луч 17 - p-поляризацию. Луч 16 отражают от тонкопленочного поляризатора 3 в поглотитель излучения 18, а луч 17 пропускают сквозь тонкопленочный поляризатор 3 в поглотитель излучения 18.
Таким образом, одновременно достигается поглощение нежелательного отраженного лазерного излучения при эффективном поддержании оптического разряда на пересечении двух лучей с помощью одного лазера.
название | год | авторы | номер документа |
---|---|---|---|
Способ генерации оптического разряда | 2023 |
|
RU2809338C1 |
Способ получения оптического разряда | 2023 |
|
RU2815740C1 |
Способ формирования оптического разряда | 2023 |
|
RU2812336C1 |
Способ запуска оптического разряда | 2024 |
|
RU2826805C1 |
СКАНИРУЮЩИЙ ЛАЗЕР | 1994 |
|
RU2082264C1 |
Способ инициации оптического разряда | 2024 |
|
RU2826806C1 |
АРХИТЕКТУРА МНОГОПРОХОДНОГО УСИЛИТЕЛЯ ДЛЯ ЛАЗЕРНЫХ СИСТЕМ БОЛЬШОЙ МОЩНОСТИ | 2011 |
|
RU2589274C2 |
Способ безэлектродного поджига оптического разряда | 2024 |
|
RU2826811C1 |
СПОСОБ ГЕНЕРАЦИИ ИМПУЛЬСОВ ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2020 |
|
RU2754395C1 |
СКАНИРУЮЩИЙ ЛАЗЕР | 1995 |
|
RU2082265C1 |
Изобретение относится к способу поддержания оптического разряда с целью получения широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях. Технический результат - расширение арсенала технических средств. В способе поддержания оптического разряда, заключающемся в поджиге оптического разряда, расположенного в разрядной камере, что излучение лазера подают на тонкопленочный поляризатор под углом Брюстера, отраженный луч с s-поляризацией пропускают через соответствующую четвертьволновую пластинку отражают от двух зеркал и фокусируют в разрядном объеме. Проходящий луч с p-поляризацией пропускают через соответствующую четвертьволновую пластинку фокусируют в разрядном объеме. Отраженные от плазмы обратные лучи, отражают от двух зеркал, пропускают через четвертьволновые пластинки, направляют на тонкопленочный поляризатор и отводят в поглотитель излучения. 2 ил.
Способ поддержания оптического разряда, заключающийся в по джиге оптического разряда, расположенного в разрядной камере, отличающийся тем, что излучение лазера подают на тонкопленочный поляризатор под углом Брюстера, проходящий через тонкопленочный поляризатор луч с р-поляризацией пропускают через соответствующую четвертьволновую пластинку и фокусируют в разрядном объеме, отраженный от тонкопленочного поляризатора луч с s-поляризацией пропускают через соответствующую четвертьволновую пластинку отражают от двух зеркал и фокусируют в разрядном объеме, зеркала располагают таким образом, чтобы лучи пересекались в разрядном объеме, а угол между лучами составлял более 60 градусов, отраженные от плазмы обратные лучи с измененной относительно прямых лучей поляризацией пропускают по их оптическим путям обратно до тонкопленочного поляризатора и отводят в поглотитель излучения.
0 |
|
SU157892A1 | |
ИСТОЧНИК СВЕТА С ЛАЗЕРНОЙ НАКАЧКОЙ И СПОСОБ ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ | 2012 |
|
RU2539970C2 |
Двухлучевой интерферометр (варианты) | 2017 |
|
RU2667335C1 |
ВЕРТИКАЛЬНО ИЗЛУЧАЮЩИЙ ЛАЗЕР С БРЭГГОВСКИМИ ЗЕРКАЛАМИ И ВНУТРИРЕЗОНАТОРНЫМИ МЕТАЛЛИЧЕСКИМИ КОНТАКТАМИ | 2013 |
|
RU2554302C2 |
US 7435982 B2, 14.10.2008. |
Авторы
Даты
2024-02-28—Публикация
2023-04-14—Подача