Предлагаемое изобретение относится к области радиотехники и может использоваться для выделения заданных спектров сигналов, например, при их аналого-цифровых преобразованиях.
Несмотря на то, что цифровая трансформация промышленного производства широко использует методы цифровой обработки аналогового сигнала, они в некоторых случаях избыточны. Как следствие, дискретно-аналоговая обработка, объединяющая основные достоинства аналогово-цифровых методов, весьма перспективна. Так, дискретно-аналоговые фильтры на переключаемых конденсаторах (ДАФ), выпускаемые десятками ведущих микроэлектронных фирм мира, в т.ч. Texas Instruments (США), Maxim (США), CYPRESS (США), Analog Devices (США) и др., дают существенный выигрыш (в сравнении с классическими цифровыми и аналоговыми фильтрами) по габаритам, статическому токопотреблению, стоимости, точности, функциональности и являются эффективным средством построения цепей частотной селекции и обработки аналоговых сигналов в науке и технике.
Дискретно-аналоговые фильтры на переключаемых конденсаторах и их практические приложения стали за последние 30 лет объектом интенсивной защиты интеллектуальной собственности практически во всех странах мира [1-86]. Наиболее перспективные решения ДАФ [1-86] запатентованы фирмами США, Японии, Франции, Тайваня, Китая, Германии, Великобритании, Италии и др.
Ближайшим прототипом заявляемого устройства является дискретно-аналоговый фильтр низких частот (фиг.1), описанный в патенте RU 2813371, 2024 г. Он содержит вход 1 и выход 2 устройства, дифференциальный операционный усилитель 3 с инвертирующим 4 входом и неинвертирующим 5 входом, соединенным с общей шиной источников питания, выход которого подключен к выходу 2 устройства, первый 6 частотозадающий конденсатор, включенный между выходом дифференциального операционного усилителя 3 и его инвертирующим 4 входом, первый 7 и второй 8 электронные ключи, второй 9 частотозадающий конденсатор, первый 10 и второй 11 последовательно соединенные резисторы обратной связи, включенные между выходом устройства 2 и его входом 1, повторитель напряжения 12, вход которого соединен с общим узлом последовательно включенных первого 10 и второго 11 резисторов обратной связи, частотозадающий резистор 13.
Существенный недостаток известного ДАФ-прототипа состоит в том, что для реализации функции второго порядка требуется два частотозадающих резистора.
Основная задача предлагаемого изобретения состоит в создании дискретно-аналогового фильтра второго порядка на переключаемых конденсаторах с двумя электронными ключами, в котором уменьшается количество резисторов частотозадающей цепи. Дополнительно появляется возможность одноэлементной перестройки частоты путем изменения сопротивления одного частотозадающего резистора при сохранении других параметров фильтра. Указанные выше преимущества реализуются путем введения в исходную схему ДАФ фиг. 1 новых связей между элементами в соответствии с формулой изобретения.
Поставленная задача достигается тем, что в дискретно-аналоговом фильтре фиг. 1, содержащем вход 1 и выход 2 устройства, дифференциальный операционный усилитель 3 с инвертирующим 4 входом и неинвертирующим 5 входом, соединенным с общей шиной источников питания, выход которого подключен к выходу 2 устройства, первый 6 частотозадающий конденсатор, включенный между выходом дифференциального операционного усилителя 3 и его инвертирующим 4 входом, первый 7 и второй 8 электронные ключи, второй 9 частотозадающий конденсатор, первый 10 и второй 11 последовательно соединенные резисторы обратной связи, включенные между выходом устройства 2 и его входом 1, повторитель напряжения 12, вход которого соединен с общим узлом последовательно включенных первого 10 и второго 11 резисторов обратной связи, частотозадающий резистор 13, предусмотрены новые связи - первый 7 и второй 8 последовательно соединенные электронные ключи включены между выходом повторителя напряжения 12 и инвертирующим 4 входом дифференциального операционного усилителя 3, а общий узел первого 7 и второго 8 последовательно соединенных электронных ключей связан с общей шиной источников питания через последовательно соединенные частотозадающий резистор 13 и второй 9 частотозадающий конденсатор.
На чертеже фиг. 1 показана схема дискретно-аналогового фильтра на переключаемых конденсаторах - прототипа.
На чертеже фиг. 2 приведена схема заявляемого дискретно-аналогового фильтра на переключаемых конденсаторах в соответствии с формулой изобретения.
На чертеже фиг. 3 представлена схема заявляемого фильтра фиг. 2 для моделирования в среде Micro-Cap.
На чертеже фиг. 4 показаны последовательности импульсов, управляющих электронными ключами в схеме фиг. 3.
На чертеже фиг. 5 приведены результаты моделирования схемы фиг. 3 в среде Micro-Cap при частоте входного сигнала 11250 Гц.
На чертеже фиг. 6 представлены результаты моделирования схемы фиг. 3 при частоте входного сигнала 11,25 Гц. Из данного графика следует, что коэффициент передачи заявляемого фильтра в диапазоне низких частот близок к минус единице.
На чертеже фиг. 7 приведены результаты моделирования схемы фиг. 3 при высокой частоте входного сигнала 112500 Гц. Из данного графика следует, что коэффициент передачи заявляемого фильтра в диапазоне высоких частот принимает очень малые значения.
Таким образом, графики фиг. 6 и фиг. 7 показывают, что заявляемое устройство обладает свойствами фильтра низких частот.
Дискретно-аналоговый фильтр второго порядка на переключаемых конденсаторах с двумя электронными ключами фиг. 2 содержит вход 1 и выход 2 устройства, дифференциальный операционный усилитель 3 с инвертирующим 4 входом и неинвертирующим 5 входом, соединенным с общей шиной источников питания, выход которого подключен к выходу 2 устройства, первый 6 частотозадающий конденсатор, включенный между выходом дифференциального операционного усилителя 3 и его инвертирующим 4 входом, первый 7 и второй 8 электронные ключи, второй 9 частотозадающий конденсатор, первый 10 и второй 11 последовательно соединенные резисторы обратной связи, включенные между выходом устройства 2 и его входом 1, повторитель напряжения 12, вход которого соединен с общим узлом последовательно включенных первого 10 и второго 11 резисторов обратной связи, частотозадающий резистор 13. Первый 7 и второй 8 последовательно соединенные электронные ключи включены между выходом повторителя напряжения 12 и инвертирующим 4 входом дифференциального операционного усилителя 3, а общий узел первого 7 и второго 8 последовательно соединенных электронных ключей связан с общей шиной источников питания через последовательно соединенные частотозадающий резистор 13 и второй 9 частотозадающий конденсатор.
Рассмотрим работу заявляемого дискретно-аналогового фильтра на чертеже фиг. 2.
При последовательном и периодическом замыкании электронных ключей 7 и 8, а также при частоте переключения электронных ключей , намного превышающей частоту полюса для звена второго порядка, в результате математического анализа схемы фиг. 2 можно показать, что этой схемой реализуется передаточная функция фильтра нижних частот второго порядка
, (1)
где М0 - коэффициент передачи ФНЧ на нулевой частоте,
- частота полюса,
- затухание полюса.
Основные параметры фильтра на чертеже фиг. 2 находятся по следующим формулам:
- коэффициент передачи ФНЧ на нулевой частоте
(2)
- коэффициент передачи ФНЧ на частоте полюса
(3)
- частота полюса
(4)
- затухание полюса
(5)
В формуле (4) - частота переключения электронных ключей, а - период их переключения, - длительность замкнутого состояния ключей в течении периода, которая может находиться в диапазоне от 0 до T/2, R10, R11, - сопротивления первого 10 и второго 11 резисторов обратной связи, R13 - сопротивление частотозадающего резистора 13, С6, С9 - емкости первого 6 и второго 9 частотозадающих конденсаторов соответственно.
Работоспособность заявляемой схемы подтверждена путем ее моделирования в программе Micro-Cap.На фиг. 3 показана схема для моделирования, а на фиг. 4 - последовательность импульсов, управляющих первым 7 и вторым 8 электронными ключами.
На чертеже фиг. 5 показана реакция схемы фиг. 3 (ее выходное напряжение v(Out_1)) на входной синусоидальный сигнал v(In) с амплитудой 1 В и частотой равной 1125 Гц, которая при параметрах элементов, указанных на схеме фиг. 3 и частоте переключения электронных ключей 1МГц (их периоде 1 мксек) равна частоте полюса , реализуемой схемой. В соответствии с формулой (3) на этой частоте при выбранных параметрах элементов коэффициент передачи ДАФ равен -3,535. Для получения меньших абсолютных значений следует соответствующим образом выбирать параметры элементов, входящих в формулу (3). В случае построения фильтра высокого порядка численные значения для каждого звена, входящего в такую структуру фильтра, могут выбираться неодинаковыми, в т.ч. .
На чертеже фиг. 5 также показан (в увеличенном масштабе) график выходного сигнала ДАФ фиг. 3, который носит «ступенчатый» характер. Ступенчатый характер выходного сигнала ДАФ соответствует физическим процессам преобразования сигналов в фильтрах рассматриваемого класса.
На чертежах фиг. 6 и фиг. 7 приведены результаты моделирования заявляемого ДАФ в диапазоне очень низких (в 100 раз ниже частоты полюса, фиг. 6) и высоких (в 100 раз выше частоты полюса, фиг. 7) частот (в сравнении с частотой полюса (4)). Из данных графиков, а также фиг. 5, следует, что рассматриваемое устройство обладает свойствами фильтра низких частот - имеет близкий к единице коэффициент передачи на очень низких частотах ( согласно формуле (2) при R10=R11) и близкий к нулю коэффициент передачи на повышенных частотах.
Таким образом, предлагаемый дискретно-аналоговый фильтр обладает существенными преимуществами в сравнении с ДАФ-прототипом - имеет при втором порядке передаточной функции только два частотозадающих конденсатора (6 и 9) и два электронных ключа (7 и 8). Известные схемы ДАФ такими свойствами не обладают.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент US 7988638-B2, 2011-08-02
2. Патент TW201725843 (A), 2017-07-16
3. Патент US 4804863-A, 1989-02-14
4. Патент US 4841263-A, 1989-06-20
5. Патент US 4849662-A, 1989-07-18
6. Патент US 4855627-A, 1989-08-08
7. Патент US 4862121-A, 1989-08-29
8. Патент US 4908579-A, 1990-03-13
9. Патент US 4926178-A, 1990-05-15
10. Патент US 5155396-A, 1992-10-13
11. Патент US 5182521-A, 1993-01-26
12. Патент US 5274583-A,1993-12-28
13. Патент US 5327092-A, 1994-07-05
14. Патент US 5331218-A, 1994-07-19
15. Патент US 5391999-A, 1995-02-21
16. Патент US 5973536-A, 1999-10-26
17. Патент US 6509791-B2, 2003-01-21
18. Патент US 6509792-B2, 2003-01-21
19. Патент US 6556072-B1, 2003-04-29
20. Патент US 6891429-B1, 2005-05-10
21. Патент US 7049883-B2, 2006-05-23
22. Патент US 7138873-B2, 2006-11-21
23. Патент US 7253664-B2, 2007-08-07
24. Патент US 7495480-B2, 2009-02-24
25. Патент US 7495508-B2, 2009-02-24
26. Патент US 7525078-B2, 2009-04-28
27. Патент US 7990209-B2, 2011-08-02
28. Патент US 8299850-B1, 2012-10-30
29. Патент US 8406357-B2, 2013-03-26
30. Патент US 8754699-B2, 2014-06-17
31. Патентная заявка US 20050116768-A1, 2005-06-02
32. Патент WO 81/01779, 1981-06-25
33. Патент WO 84/01065, 1984-03-15
34. Патент WO 97/15115, 1997-04-24
35. Патент WO 2010147713 (A1), 2010-12-23
36. Патент SU 1510072, 23.09.89
37. Патент SU 799107, 23.01.81
38. Патент SU 623250, 05.09.1978
39. Патент SU 1827712 А1, 15.07.1993
40. Патент SU 1764142 А1, 23.09.92
41. Патент SU 1732434 А1, 07.05.92
42. Патент SU 1695495, 30.11.91
43. Патент SU 1610594 А1, 30.11.90
44. Патент DE 3118198 (A1), 1982-11-25
45. Патент CA 1224252 (A), 1987-07-14
46. Патент EP 0020131 (B1), 1982-12-01
47. Патент EP 0042116 (A1), 1981-12-23
48. Патент EP 0054561 (B1), 1986-04-16
49. Патент EP 0055260 (B1), 1985-09-25
50. Патент EP 0109612 (B1), 1989-05-24
51. Патент EP 0118482 (B1),1986-06-04
52. Патент EP 0226490 (B1), 1991-01-23
53. Патент EP 0308287 (B1), 1992-04-08
54. Патент JP 6520587 (B2), 2019-05-29
55. Патент EP 0799527 (B1), 2002-01-16
56. Патент EP 2259426 (A1), 2010-12-08
57. Патент GB 2159014 (A), 1985-11-20
58. Патент RU 2054792, 20.02.96
59. Патент RU 2317636, 20.02.2008
60. Патент RU 2321056, 27.03.2008
61. Патентная заявка US 20020167353-A1, 2002-11-14
62. Патентная заявка US 20130113550-A1, 2013-05-09
63. Патент US 3999137-A, 1976-12-21
64. Патент US 4179665-A, 1979-12-18
65. Патент US 4290034-A, 1981-09-15
66. Патент US 4306197-A, 1981-12-15
67. Патент US 4331894-A, 1982-05-25
68. Патент US 4333064-A, 1982-06-01
69. Патент US 4366456-A, 1982-12-28
70. Патент US 4393351-A,1983-07-12
71. Патент US 4429281-A, 1984-01-31
72. Патент US 4446438-A, 1984-05-01
73. Патент US 4476448-A, 1984-10-09
74. Патент US 4484358-A, 1984-11-20
75. Патент US 4513265-A, 1985-04-23
76. Патент US 4520283-A, 1985-05-28
77. Патент US 4538113-A, 1985-08-27
78. Патент US 4550295-A, 1985-10-29
79. Патент US 4551683-A, 1985-11-05
80. Патент US 4558292-A, 1985-12-10
81. Патент US 4574250-A, 1986-03-04
82. Патент US 4600904-A, 1986-07-15
83. Патент US 4633223-A, 1986-12-30
84. Патент US 4743872-A, 1988-05-10
85. Патент US 4763088-A, 1988-08-09
86. Патент US 6573784-B2, 2003-06-03
название | год | авторы | номер документа |
---|---|---|---|
Дискретно-аналоговый фильтр на переключаемых конденсаторах | 2023 |
|
RU2818307C1 |
Дискретно-аналоговый фильтр второго порядка на переключаемых резисторах с двумя электронными ключами | 2023 |
|
RU2813371C1 |
Дискретно-аналоговый фильтр низких частот на переключаемых конденсаторах с повышенной добротностью полюса | 2023 |
|
RU2813367C1 |
Дискретно-аналоговый фильтр на переключаемых конденсаторах | 2023 |
|
RU2818305C1 |
Фильтр низких частот второго порядка на двух переключаемых конденсаторах | 2024 |
|
RU2825417C1 |
Дискретно-аналоговый фильтр низких частот второго порядка с тремя частотозадающими конденсаторами | 2023 |
|
RU2818303C1 |
Дискретно-аналоговый фильтр низких частот на переключаемых конденсаторах | 2023 |
|
RU2813368C1 |
Дискретно-аналоговый ARCS-фильтр низких частот с двумя электронными ключами | 2023 |
|
RU2818308C1 |
Дискретно-аналоговый фильтр с тремя заземленными конденсаторами | 2023 |
|
RU2813369C1 |
Дискретно-аналоговый фильтр второго порядка на переключаемых конденсаторах и сумматоре сигналов на основе мультидифференциального операционного усилителя | 2024 |
|
RU2825419C1 |
Изобретение относится к области радиотехники. Технический результат: уменьшение количества резисторов частотозадающей цепи и обеспечение возможности одноэлементной перестройки частоты. Для этого предложен дискретно-аналоговый фильтр второго порядка на переключаемых конденсаторах с двумя электронными ключами, в котором первый (7) и второй (8) последовательно соединенные электронные ключи включены между выходом повторителя напряжения (12) и инвертирующим (4) входом дифференциального операционного усилителя (3), а общий узел первого (7) и второго (8) последовательно соединенных электронных ключей связан с общей шиной источников питания через последовательно соединенные частотозадающий резистор (13) и второй (9) частотозадающий конденсатор. 7 ил.
Дискретно-аналоговый фильтр второго порядка на переключаемых конденсаторах с двумя электронными ключами, содержащий вход (1) и выход (2) устройства, дифференциальный операционный усилитель (3) с инвертирующим (4) входом и неинвертирующим (5) входом, соединенным с общей шиной источников питания, выход которого подключен к выходу (2) устройства, первый (6) частотозадающий конденсатор, включенный между выходом дифференциального операционного усилителя (3) и его инвертирующим (4) входом, первый (7) и второй (8) электронные ключи, второй (9) частотозадающий конденсатор, первый (10) и второй (11) последовательно соединенные резисторы обратной связи, включенные между выходом устройства (2) и его входом (1), повторитель напряжения (12), вход которого соединен с общим узлом последовательно включенных первого (10) и второго (11) резисторов обратной связи, частотозадающий резистор (13), отличающийся тем, что первый (7) и второй (8) последовательно соединенные электронные ключи включены между выходом повторителя напряжения (12) и инвертирующим (4) входом дифференциального операционного усилителя (3), а общий узел первого (7) и второго (8) последовательно соединенных электронных ключей связан с общей шиной источников питания через последовательно соединенные частотозадающий резистор (13) и второй (9) частотозадающий конденсатор.
Дискретно-аналоговый фильтр второго порядка на переключаемых резисторах с двумя электронными ключами | 2023 |
|
RU2813371C1 |
ФИЛЬТР НИЗКИХ ЧАСТОТ ЧЕТВЕРТОГО ПОРЯДКА | 2020 |
|
RU2748609C1 |
US 5963112 A1, 05.10.1999 | |||
ДИСКРЕТНО-АНАЛОГОВЫЙ ФИЛЬТР НИЗКИХ ЧАСТОТ НА ПЕРЕКЛЮЧАЕМЫХ КОНДЕНСАТОРАХ | 2023 |
|
RU2801744C1 |
Авторы
Даты
2024-08-26—Публикация
2024-03-28—Подача