УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ Советский патент 1994 года по МПК H05H5/00 H01J29/48 

Описание патента на изобретение SU1400467A1

Изобретение относится к области электротехники, в частности к ускорителям электронов прямого действия и предназначено для использования в электрофизических приборах и технологических установках.

Целью изобретения является расширение функциональных возможностей и повышение удельной мощности.

На фиг.1 представлен общий вид устройства; на фиг.2 - лучевод; на фиг.3 - разрез А-А на фиг.2; на фиг.4 - кривые, характеризующие режим самооткачки рабочего объема ускорителя p = f(Q), где р - давление, Q - расход газа.

Ускоритель содержит корпус 1, откачную систему 2, электронную пушку 3, собранную в изоляторе 4. Пушка 3 содержит термокатодный узел 5 с катодом 6, анод 7, установленный на водоохлаждаемом фланце 8, внутренние цилиндрические экраны 9 и 10 и внешний экран 11, установленный на дополнительном изоляторе 12 с встроенным магниторазрядным насосом 13. Насос собран из двух групп постоянных магнитов 14 и плоских решетчатых электродов 15. Питание к пушке подводится через токовводы 16. Цилиндрический лучевод 17 охвачен магнитным соленоидом 18 и переходит в рабочую камеру 19, которая может быть снабжена стационарным откачным насосом. Лучевод собран из двух цилиндров - внешнего 20 и внутреннего 21, покрытого титановой губкой 22, между удаленными от пушки 3 торцами цилиндров 20 и 21 установлена кольцевая перегородка 23. В частном случае лопатки состоят из сегментных частей цилиндров 24, ориентированных по эвольвенте вокруг оси лучеводa и трубчатых корпусов 25 дополнительных подогревателей 26 из нихрома, изолированных алундом. Полые фланцы 27 и 28 лучевода герметично соединены трубчатыми корпусами подогревателей, образуя систему для циркуляции хладагента (азота). Эта герметичная охлаждающая структура лучевода и геттерной системы снабжена штуцерами 29 и 30 для ввода и вывода хладагента. Устройство содержит также металлокерамические вводы 31 к нагревателям геттерной системы, а в отпаянном автономным варианте специальные натекатели 32 газа (типа генераторов водорода).

Устройство работает следующим образом.

После включения откачной системы 2 и получения в электронной пушке 3 рабочего вакуума ≈ 10-6 мм рт.ст. включают накал термокатодного узла 5. Одновременно подают хладагент через штуцера 29 и 30 в геттерную систему, встроенную в лучевод 17. После выхода катода 6 пушки на заданный режим эмиссии подают питание на магнитный соленоид 18 и включают ускоряющее напряжение пушки через токоввод 16. Электронный пучок с высокой компрессией формируется в промежутке катод 6-анод 7 пушки и в полости лучевода взаимодействует с газом, поступающим от натекателя 32. Геттерная система, встроенная в лучевод, обеспечивает перепад давлений между пушкой и рабочей камерой примерно на два порядка. Поэтому даже в случае развития в рабочей камере пучковоплазменного разряда обеспечивается надежная развязка процессов формирования и ускорения пучка в пушке и процесса транспортировки энергии за пределами лучевода.

Поток газа и заряженных частиц, попадающий из рабочей камеры через отверстие в нижнем фланце в полость лучевода, собирается на полых лопатках, состоящих в частном конкретном случае из сегментных частей цилиндров 24 и трубчатых корпусов 25, а также на поверхности внутреннего цилиндра 21 лучевода. Полые фланцы 27 и 28 лучевода разделяют зоны низкого давления со стороны пушки и высокого давления со стороны рабочей камеры. Скорость сорбции регулируется подбором типа хладагента и его расхода в зависимости от параметров электронного пучка и уровня тока утечки на лопатки. Для восстановления работоспособности геттерной системы по истечении заданной длительности рабочего цикла через штуцера 29 и 30 откачивают хладагент, а нихромовые подогреватели 26 через вводы 31 подключают к источнику накала. Подогреватели, расположенные осесимметрично в трубчатых корпусах 25 лопаток по всей высоте лучевода могут включаться между собой последовательно или параллельно. Происходит разогрев геттерной системы до температуры десорбции поглощенного газа, который поглощается автономным приемником-генератором водорода 32. Разогрев лопаток может производиться несфокусированным электронным пучком при отключении соленоида 18.

Энергия пучка может варьироваться в пределах от десятков до 200 кэВ, интенсивность от единиц до десятков ампер в непрерывном режиме и до сотен ампер в частотно-импульсном. В указанном диапазоне параметров длина электронно-лучевого тракта до выхода в рабочую камеру может составлять 100-200 мм.

Результаты экспериментальной отработки режима самооткачки в лучеводе (см. фиг. 4) при различных температурах геттерной системы и расходах газа Q (Л˙мм рт.ст./с) показали, что перепад давлений на входе и выходе из лучевода при комнатной температуре составляет 1,5-2 порядка, при температуре жидкого азота 2,5-3 порядка. Габариты лучевода с встроенной геттерной системой и подогревателями составили - диаметр 120 мм, высота - 100 мм, причем диаметр внутреннего цилиндра 21, покрытого титановой губкой, составил 100 мм, диаметр цилиндрической осевой зоны 12 мм, диаметр трубчатых корпусов подогревателей 25, установленных симметрично у вершин правильного шестиугольника, ≈ 70 мм.

Жидкий азот подается через штуцер 29 во внутреннюю герметичную полость нижнего фланца лучевода 28, затем поступает по трубчатым корпусам подогревателей в полость верхнего фланца лучевода 27 и выходит через второй штуцер 30.

В качестве рабочего газа используется водород, поступающий в рабочую камеру 19 после включения накала генератора 32 водорода. Скорость сорбции водорода в полости лучевода - на лопатках и поверхности внутреннего цилиндра 21 регулируется расходом хладагента.

В режиме десорбции геттерной системы водород может вновь поглощаться генератором 32. Поэтому устройство может функционировать в отпаянном исполнении, обеспечивая необходимые вакуумные условия в области формирования и ускорения пучка и регулируемый режим самооткачки.

Положительный эффект от применения изобретения обусловлен увеличением удельной мощности ускорителя, достигаемой за счет конструктивного совмещения геттерной системы и лучевода, а также электронной пушки и откачной системы, выполненной в виде секционированного магниторазрядного насоса, встроенного в экран катодного узла пушки. Такая структура основных узлов ускорителя обеспечивает одновременно расширение его функциональных возможностей за счет регулируемого изменения параметров газовой среды в заанодном пространстве, позволяющего в итоге увеличить характеристическую проводимость всего электронно-лучевого тракта, а следовательно, и мощность прибора в заданных габаритах, а также позволяет разрабатывать компактные, автономные приборы, механически развязанные от внешних откачных систем.

Использование ускорителя заряженных частиц в зависимости от уровня рабочего напряжения (от десятков до сотен киловольт) позволяет улучшить технико-экономические показатели электронно-лучевых технологических установок и электрофизических приборов, в частности применяемых в СВЧ-технике и в экспериментах по исследованию взаимодействия релятивистских пучков с плазмой в импульсном и непрерывном режимах.

Похожие патенты SU1400467A1

название год авторы номер документа
ПУЧКОВО-ПЛАЗМЕННЫЙ СВЧ-ПРИБОР 1986
  • Переводчиков В.И.
  • Бацких Г.И.
  • Сушин Ю.В.
  • Завьялов М.А.
  • Лисин В.Н.
  • Мартынов В.Ф.
  • Шапиро А.Л.
  • Дьяков В.М.
RU2084986C1
ИНЖЕКТОР ЭЛЕКТРОНОВ С ВЫВОДОМ ПУЧКА В ГАЗОВУЮ СРЕДУ 1986
  • Мартынов В.Ф.
  • Завьялов М.А.
  • Переводчиков В.И.
  • Лисин В.Н.
  • Шапиро А.Л.
SU1447256A1
ПУЧКОВО-ПЛАЗМЕННЫЙ СВЧ-ПРИБОР 2005
  • Завьялов Михаил Александрович
  • Мартынов Владимир Филиппович
  • Тюрюканов Павел Михайлович
RU2290713C1
АКСИАЛЬНАЯ ЭЛЕКТРОННАЯ ПУШКА 2011
  • Буянкин Алексей Алексеевич
RU2479884C2
ПУЧКОВО-ПЛАЗМЕННЫЙ СВЧ-ПРИБОР 1986
  • Переводчиков В.И.
  • Завьялов М.А.
  • Неганова Л.А.
  • Лисин В.Н.
  • Мартынов В.Ф.
  • Шапиро А.Л.
  • Цхай В.Н.
RU2084985C1
ПУЧКОВО-ПЛАЗМЕННЫЙ СВЧ-ПРИБОР (ВАРИАНТЫ) 2006
  • Завьялов Михаил Александрович
  • Мартынов Владимир Филиппович
  • Тюрюканов Павел Михайлович
  • Казаков Алексей Иванович
RU2330347C1
ИНЖЕКТОР ЭЛЕКТРОНОВ С ВЫВОДОМ ЭЛЕКТРОННОГО ПУЧКА В СРЕДУ С ПОВЫШЕННЫМ ДАВЛЕНИЕМ И ЭЛЕКТРОННО-ЛУЧЕВАЯ УСТАНОВКА НА ЕГО ОСНОВЕ 2007
  • Завьялов Михаил Александрович
  • Мартынов Владимир Филиппович
  • Тюрюканов Павел Михайлович
  • Казаков Алексей Иванович
RU2348086C1
ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА ДЛЯ НАГРЕВА МАТЕРИАЛОВ В ВАКУУМЕ 2005
  • Завьялов Михаил Александрович
  • Мартынов Владимир Филиппович
  • Гусев Николай Семенович
  • Смирнов Владимир Николаевич
  • Лисин Владимир Николаевич
  • Тюрюканов Павел Михайлович
RU2314593C2
ПУЧКОВО-ПЛАЗМЕННЫЙ СВЧ-КОМПЛЕКС 2005
  • Переводчиков Владимир Иннокентьевич
  • Мартынов Владимир Филиппович
  • Завьялов Михаил Александрович
  • Лисин Владимир Николаевич
  • Тюрюканов Павел Михайлович
  • Гусев Станислав Иванович
RU2285975C1
ИНЖЕКТОР ЭЛЕКТРОНОВ ДЛЯ ВЫВОДА ПУЧКА В АТМОСФЕРУ 1982
  • Мартынов В.Ф.
  • Завьялов М.А.
  • Лисин В.Н.
  • Зверев В.В.
SU1098513A1

Иллюстрации к изобретению SU 1 400 467 A1

Реферат патента 1994 года УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ

Изобретение относится, в частности, к ускорителям электронов прямого действия и предназначено для использования в электрофизических приборах и технологических установках. Ускоритель заряженных частиц (УЗЧ) содержит корпус 1, откачную систему 2, электронную пушку (ЭП) 3, собранную в изоляторе 4 и имеющую термокатодный узел 5 с катодом 6, анод 7, размещенный на водоохлаждаемом фланце 8, внутренние цилиндрические экраны 9, 10 и внешний экран 11, установленный на изоляторе 12 с встроенным магниторазрядным насосом 13, имеющим две группы постоянных магнитов 14 и плоские решетчатые электроды 15. УЗЧ имеет также цилиндрический лучевод (ЦЛ) 17, собранный из внутреннего и внешнего цилиндров 21 и 20 соответственно, между удаленными от ЭН 3 торцами которых имеется кольцевая перегородка 23, геттерную систему, встроенную во внутренний цилиндр 21 и выполненную из расположенных симметрично полых профилированных лопаток, герметично соединенных с ЦЛ 17. Полые фланцы 27 и 28 герметично соединены трубчатыми корпусами подогревателей, образуя систему для циркуляции хладагента. УЗЧ имеет расширенные функциональные возможности за счет регулируемого изменения параметров газовой среды в заанодном пространстве. 1 з.п.ф-лы, 4 ил.

Формула изобретения SU 1 400 467 A1

1. УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ, содержащий корпус, откачную систему, электронную пушку, геттерную систему, цилиндрический лучевод, охваченный магнитным соленоидом и рабочую камеру, отличающийся тем, что, с целью расширения функциональных возможностей и повышения удельной мощности, лучевод выполнен в форме двух осесимметричных цилиндров, между удаленными от пушки торцами которых установлена кольцевая перегородка, при этом геттерная система встроена во внутренний цилиндр и выполнена из расположенных симметрично полых профилированных лопаток, причем поверхности внутреннего цилиндра и лопаток покрыты геттерным материалом, а лучевод снабжен полыми фланцами, которые герметично соединены с полыми лопатками, и штуцерами для ввода и вывода хладагента. 2. Ускоритель по п.1, отличающийся тем, что лопатки геттерной системы выполнены в виде сегментных частей металлических цилиндров, ориентированных по эвольвенте вокруг оси симметрии лучевода, а вдоль внешних образующих цилиндрических сегментов установлены трубчатые корпуса дополнительных подогревателей, покрытые титановой губкой.

Документы, цитированные в отчете о поиске Патент 1994 года SU1400467A1

УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ 1982
  • Мартынов В.Ф.
  • Лисин В.Н.
  • Завьялов М.А.
  • Зверев В.В.
SU1047368A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1

SU 1 400 467 A1

Авторы

Мартынов В.Ф.

Переводчиков В.И.

Завьялов М.А.

Шапиро А.Л.

Лисин В.Н.

Неганова Л.А.

Даты

1994-06-30Публикация

1986-01-02Подача