СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ДИНАМИКИ ГАЗОНАСЫЩЕННЫХ И ДВУХФАЗНЫХ ГАЗОЖИДКОСТНЫХ ПОТОКОВ В РЕЛЬЕФНЫХ ТРУБОПРОВОДАХ Российский патент 1994 года по МПК G01M10/00 

Описание патента на изобретение RU2018800C1

Изобретение относится к исследованию динамики газонасыщенных и двухфазных газожидкостных потоков в рельефных трубопроводах, например газонасыщенных нефтей и нефтепродуктов в условиях фазовых переходов на магистральных трубопроводах с учетом рельефа местности.

Целью изобретения является расширение диапазона измерений, уменьшение относительных габаритов модельного участка рельефного трубопровода и обеспечение возможности моделирования динамики роста газовых скоплений в условиях фазовых переходов и их последующего размыва (растворения) в условиях, максимально приближенных к реальным, характерным для магистральных трубопроводов.

Поставленная цель достигается тем, что стенд для исследования гидродинамических процессов двухфазных потоков в рельефных трубопроводах представляет собой модельный измерительный участок, выполненный из трех параллельно уложенных на качающемся лонжероне стеклянных труб различного диаметра, который установлен через шарнирный узел в штативе с возможностью поворота в вертикальной плоскости в диапазоне 0-20о, стеклянные трубы, имеющие восходящие и нисходящие участки, соединены под углом 120о относительно друг друга посредством стальных гнутых вставок, имеющих вваренные штуцеры с трехходовыми кранами для ввода в полость труб газа, моделирующего газовые скопления, и подключения образцового манометра для определения давления в газовом скоплении.

Кроме того, в восходящих участках предусмотрены кассетные струевыпрямители, состоящие из пакетов тонкостенных трубок меньшего диаметра, обеспечивающих стабилизацию гидродинамической характеристики потока перекачиваемой модельной жидкости.

На всасывающей линии насосной станции стенда предусмотрен сатуратор для приготовления газонасыщенной модельной жидкости, соединенный с помощью насоса с емкостью для жидкости и газовым баллоном.

На фиг.1 изображена схема стенда; на фиг.2 - схема измерительного участка стенда, установленного в штативе; на фиг. 3 - разрез А-А на фиг.2 (сечение труб в месте установки кассетных струевыпрямителей).

Стенд состоит из приемно-расходной емкости для модельной жидкости Е1 объемом 1,2 м3, насосной станции (НС), состоящей из трех параллельно соединенных центробежных насосов Н1, Н2 и Н3, узла учета (УУ), оборудованного двумя параллельно установленными расходомерами Р1 и Р2 типа TURBOQUANT, измерительного участка (ИУ), выполненного из трех параллельно уложенных на качающемся лонжероне стеклянных труб диаметром 0,056, 0,079 и 0,105 м соответственно, который установлен через шарнирный узел в штативе и узла подготовки газонасыщенной жидкости (УРГЖ), включающего сатуратор (С) с приводом для сатуратора (ПС), газовым баллоном (ГБ) с регулятором давления (РД). Все основные узлы стенда соединены стальными оцинкованными трубопроводами диаметром Dу = 50 мм.

Насосы на насосной станции подключены к всасывающему и нагнетательному трубопроводу с помощью кранов 1 - 6. На НС имеются сетчатый фильтр (Ф), контрольный манометр М2 и дренажный патрубок с краном 7 для слива модельной жидкости из системы технологической обвязки НС.

Узел учета имеет две параллельные измерительные линии с расходомерами Р1 и Р2, подключенными с помощью кранов 8 - 11 в байпасную линию с краном 12.

УУ через регулирующую задвижку 13 соединен с измерительным участком (ИУ) при помощи гибкого резинового рукава 14 (Dу = 50 мм), обеспечивающего возможность перемещения ИУ в вертикальной плоскости.

Измерительный участок (см.фиг.2), моделирующий элемент профиля трубопровода, состоит из трех параллельно уложенных на качающемся лонжероне 15 стеклянных труб диаметром 0,056, 0,079, 0,105 м соответственно, который установлен через шарнирный узел 16 в штативе 17. Трубы ИУ состоят из восходящего и нисходящего участков, имеющих длину L1 = 1.1 и L2 = 5,1 м соответственно, соединены между собой под углом 120о относительно друг друга посредством стальных гнутых вставок 18, имеющих вваренные штуцеры с трехходовыми кранами 19 - 21 для ввода в полость труб газа из газового баллона через регулятор давления и краны 22 и 23, моделирующего газовые скопления и подключения образцового манометра М1 для измерения давления в газовом скоплении в ходе эксперимента. Восходящие и нисходящие участки имеют распределительные гребенки с кранами 24 - 29. С помощью подвижной опоры 30 нисходящий участок стеклянных труб имеет возможность изменять угол наклона в вертикальной плоскости в диапазоне 0 - 20о относительно горизонтальной оси. Кроме того, восходящие участки имеют кассетные струевыпрямители 31, состоящие из пакетов тонкостенных трубок меньшего диаметра (см.фиг.3) и обеспечивающие стабилизацию гидродинамической характеристики потока перекачиваемой модельной жидкости.

Распределительная гребенка нисходящего участка ИУ с кранами 27- 29 с помощью гибкого шланга 33 подключена к обратной линии 34, которая связана с помощью кранов 35 - 37 с приемно-расходной емкостью Е1 и сатуратором С, а с помощью крана 32 соединена с калиброванной емкостью Е2, предусмотренной для контрольных измерений расхода перекачиваемой модельной жидкости объемным способом в области малых значений расходов. Для перекачки модельной жидкости из калиброванной емкости Е2 в приемно-расходную емкость E1 предусмотрен насос Н4 и трубопровод с кранами 38 и 39.

Узел подготовки газонасыщенной жидкости через задвижку 40 подключен к всасывающей линии насосной станции и включает сатуратор, имеющий привод ПС и соединенный с газовым баллоном через регулятор давления и задвижку 41. Для контроля давления газа и газонасыщенной жидкости в УПГИ предусмотрены манометры М3 и М4. Приемно-расходная емкость Е1 подключена к всасывающему коллектору насосной станции с помощью крана 42.

Подготовка стенда к работе осуществляется следующим образом.

Включают один из насосов, например Н3, насосной станции и при открытых кранах 42, 5, 6, 26, 29, 35 и 36 и регулирующей задвижки 13 производят заполнение одной из труб исследуемого участка модельной жидкостью из приемно-расходной емкости Е1. При этом трехходовой кран 21 открыт и связывает полость исследуемого участка с атмосферой. После заполнения системы модельной жидкостью насос включают и с помощью подвижной опоры 30 нисходящий участок стеклянных труб устанавливают и фиксируют под определенным углом к горизонту в соответствии с планом эксперимента. Затем с помощью кранов 22 и 23 из газового баллона через регулятор давления подают газ, формируя газовое скопление требуемого по эксперименту объема, при этом часть модельной жидкости вытесняется в калиброванную емкость E2. Кран 12 на байпасной линии узла учета закрывают и открывают краны 8 и 10, подключая один из расходомеров, например Р1, позволяющий определять как объемное количество перекачиваемой жидкости, так и мгновенное текущее значение расхода.

Работа на стенде происходит следующим образом.

Включают насос или насосы насосной станции, обеспечивающие требуемый расход модельной жидкости, и одновременно открывают кран 29 на нисходящем участке измерительного узла. С помощью регулирующей задвижки 13 устанавливают более точный расход модельной жидкости в системе, который контролируют по расходомеру Р1. Одновременно с пуском насосной станции в рабочем режиме включают секундомер, с помощью которого фиксируют время размыва или выноса газового скопления, а с помощью образцового манометра М1 измеряют изменение давления в газовом скоплении в ходе эксперимента. По окончании эксперимента модельную жидкость из измерительного узла с помощью насоса Н4 сливают в приемно-расходную емкость Е1.

При исследовании гидродинамических процессов на газонасыщенной модельной жидкости работа на стенде происходит следующим образом.

Открывая кран 37 на обратной линии, модельную жидкость подают в сатуратор. После заполнения сатуратора жидкостью из газового баллона через регулятор давления при открытой задвижке 41 в сатуратор подают Г. Смесь газа с жидкостью в сатураторе подвергают тщательному перемешиванию с помощью привода сатуратора. При этом газ растворяется, т.е. насыщает модельную жидкость. После приготовления газонасыщенной жидкости кран 37 и задвижка 41 закрываются. Открывают задвижку 40 и производят пуск насоса. Последующий порядок работы на стенде такой же, как и на дегазированной жидкости, отличается лишь тем, что с помощью регулирующей задвижки 13 создают режимы перекачки, моделирующие как рост газовых скоплений в условиях фазовых переходов или разгазирования газонасыщенной жидкости, так и удаление газовых скоплений или их растворение потоком жидкости при увеличении ее расхода.

Исследование процесса выноса и размыва газовых скоплений, а также их роста в условиях фазовых переходов при перекачке как дегазированных, так и газонасыщенных жидкостей позволяет прогнозировать аналогичные процессы на реальных нефтепродуктопроводах, которые отрицательно сказываются на показателях их работы, надежности оборудования, достоверности учета объемов перекачиваемых нефти и нефтепродуктов, а также выбрать наиболее рациональные режимы перекачки жидкости, позволяющие избежать указанные осложнения.

Похожие патенты RU2018800C1

название год авторы номер документа
СПОСОБ ПОДГОТОВКИ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА К РЕМОНТУ 1991
  • Коршак А.А.
  • Новоселов В.Ф.
  • Фролов Ю.А.
  • Степанова И.М.
RU2016349C1
Стенд для моделирования процессов течения наклонно-направленных газожидкостных потоков 2017
  • Люгай Дмитрий Владимирович
  • Бородин Сергей Александрович
  • Васильев Юрий Николаевич
  • Николаев Олег Валерьевич
RU2641337C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ТЕЧЕНИЯ ЖИДКОСТИ В ТРУБОПРОВОДЕ 2018
  • Чужинов Сергей Николаевич
  • Фридлянд Яков Михайлович
  • Лукманов Марат Рифкатович
  • Семин Сергей Львович
  • Гольянов Андрей Иванович
  • Фастовец Денис Николаевич
  • Миронов Михаил Сергеевич
  • Хайбрахманов Ильшат Рафаэльевич
RU2678712C1
Стенд для определения перетоков жидкости через разделитель 1988
  • Фролов Юрий Афанасьевич
  • Новоселов Виктор Федорович
SU1642109A1
СТЕНД ДЛЯ ИСПЫТАНИЯ ФИЛЬТРОВ СКВАЖИННЫХ НАСОСНЫХ УСТАНОВОК 2018
  • Шишлянников Дмитрий Игоревич
  • Шавалеева Анна Викторовна
  • Коротков Юрий Григорьевич
  • Механошина Ольга Романовна
RU2687690C1
СПОСОБ БЕСПЕРЕБОЙНОЙ ЭКСПЛУАТАЦИИ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН, ОБЕСПЕЧИВАЮЩИЙ ВЫНОС СКАПЛИВАЮЩЕЙСЯ ЗАБОЙНОЙ ЖИДКОСТИ 2019
  • Билянский Николай Васильевич
  • Хромцов Алексей Викторович
  • Семёнов Сергей Витальевич
  • Тереханов Александр Анатольевич
RU2722897C1
УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ИСТЕЧЕНИЯ СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ 2011
  • Гумеров Асгат Галимьянович
  • Рахматуллин Шамиль Исмагилович
  • Коркишко Александр Николаевич
  • Карамышев Виктор Григорьевич
RU2464484C1
Стенд для исследования процесса вымывания жидкости 1987
  • Фролов Юрий Афанасьевич
  • Новоселов Виктор Федорович
  • Юдин Константин Викторович
SU1456819A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ УТЕЧКИ ЖИДКОСТИ ЧЕРЕЗ НЕПЛОТНОСТИ ПОДЪЕМНОЙ КОЛОННЫ ШТАНГОВОЙ НАСОСНОЙ УСТАНОВКИ 1991
  • Ишмурзин А.А.
RU2023148C1
СТЕНД ДЛЯ МОДЕЛИРОВАНИЯ ЗАСОРЕНИЯ СТУПЕНЕЙ ПОГРУЖНЫХ ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ 2018
  • Павлов Данил Андреевич
  • Пещеренко Сергей Николаевич
RU2681054C1

Иллюстрации к изобретению RU 2 018 800 C1

Реферат патента 1994 года СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ДИНАМИКИ ГАЗОНАСЫЩЕННЫХ И ДВУХФАЗНЫХ ГАЗОЖИДКОСТНЫХ ПОТОКОВ В РЕЛЬЕФНЫХ ТРУБОПРОВОДАХ

Сущность изобретения: моделирующий участок труб из трех параллельных труб различного диаметра снабжен качающимся лонжероном с шарнирным узлом и штативом, в котором он установлен с возможностью поворота в вертикальной плоскости в диапазоне 0 - 20°. Стеклянные трубы с выходящими и нисходящими участками соединены под углом 120° одна относительно другой стальными гнутыми вставками с вваренными штуцерами. Штуцера имеют трехходовые краны для ввода в полость труб газа и подключения образцового манометра. В восходящих участках труб установлены кассетные струевыпрямители, выполненные в виде пакетов тонкостенных трубок меньшего диаметра. Насосная станция оборудована тремя насосами, соединенными параллельно. На всасывающей линии станции установлен сатуратор и газовый баллон для приготовления газонасыщенной модельной жидкости и соединен с помощью насоса с емкостью для исследуемой жидкости. 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 018 800 C1

1. СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ДИНАМИКИ ГАЗОНАСЫЩЕННЫХ И ДВУХФАЗНЫХ ГАЗОЖИДКОСТНЫХ ПОТОКОВ В РЕЛЬЕФНЫХ ТРУБОПРОВОДАХ, состоящий из приеморасходной емкости для исследуемой жидкости, насосной станции, фильтра, узла учета, стеклянных труб, моделирующих рельефный участок трубопровода, трубопроводов технологической обвязки, отличающийся тем, что моделирующий участок труб стенда выполнен из трех параллельных труб различного диаметра, снабжен качающимся лонжероном с шарнирным узлом и штативом, в котором он установлен с возможностью поворота в вертикальной плоскости в диапазоне 0 - 20o, а стеклянные трубы с восходящими и нисходящими участками соединены под углом 120o посредством стальных гнутых вставок с вваренными штуцерами, последние имеют трехходовые краны для ввода в полость труб газа и подключения образцового манометра. 2. Стенд по п.1, отличающийся тем, что в восходящих участках труб установлены кассетные струевыпрямители, выполненные в виде пакетов тонкостенных трубок меньшего диаметра. 3. Стенд по пп. 1 и 2, отличающийся тем, что насосная станция оборудована тремя насосами, соединенными параллельно. 4. Стенд по пп. 1 - 3, отличающийся тем, что на всасывающей линии насосной станции установлены сатуратор и газовый баллон для приготовления газонасыщенной модельной жидкости и соединен с помощью насоса с емкостью для жидкости.

Документы, цитированные в отчете о поиске Патент 1994 года RU2018800C1

Черняев В.Д
и др
Трубопроводный транспорт нефти в сложных условиях эксплуатации
М.: Недра, 1990, с.222-229.

RU 2 018 800 C1

Авторы

Нечваль А.М.

Коршак А.А.

Новоселов В.Ф.

Тугунов П.И.

Фролов Ю.А.

Даты

1994-08-30Публикация

1991-03-26Подача