Изобретение относится к физической электронике и может быть использовано в электронных спектрометрах, обладающих угловым разрешением, составляющим десятые доли градуса и меньше, и энергетическим разрешением ΔЕ, меньшим величины теплового разброса электронов ΔЕс ≃ 0,2 - 0,6 эВ, эмиттированных катодом пушки.
Традиционно применяемые способы исследования зависимостей коэффициента упругого отражения R от энергии падающих на образец электронов Ер, основанные на монохроматизации зондирующего пучка, в том числе двухкаскадной монохроматизации [1,2,3], имеют следующие недостатки, устраняемые или ослабляемые в предлагаемом способе.
Малая интенсивность зондирующего пучка и, как следствие этого, малая чувствительность и скорость записи спектров, недостаточные для регистрации многих динамических процессов, происходящих, например, на поверхности твердого тела при адсорбции молекул газа.
Традиционное применение на выходе анализатора в качестве коллектора вторично-электронного умножителя позволяет регистрировать в каждый момент времени сигнал, соответствующий лишь одной точке на зависимости R(Ep), что также ограничивает скорость записи спектров упругого отражения.
Целью изобретения является повышение чувствительности и скорости записи спектров путем повышения интенсивности зондирующего и анализируемого потока, облегчение конструирования, настройки и обслуживания спектрометров, создаваемых для исследования спектров упругого отражения на основе предлагаемого способа исследования.
Для достижения цели поток первичных электронов с энергетическим разбросом ΔЕс, формируемый электронной пушкой, замедляют (или ускоряют) в К1 = 1 - 1000 раз по энергии до значения энергии Ер = 1 - -1000 эВ, при которой требуется измерить коэффициент упругого отражения мишени, отражают мишенью (ее поверхностью или объемом), замедляют (или ускоряют) в К2 = 1 - 100 раз до энергии настройки энергоанализатора, анализируют с помощью энергоанализатора спектр отраженного пучка в диапазоне энергий Ер/К2 ± 0,5 ΔЕс, соответствующем области упругого отражения электронов, регистрируют электроны пучка, прошедшего через энергоанализатор и попавшего на коллектор.
На выходе энергоанализатора возможно использование в качестве детектора какого-либо позиционно-чувствительного детектора (П.Ч.Д), например, микроканальной пластины. При этом оказывается возможной одновременная раздельная регистрация сигналов упругого отражения, вызванных электронами анализируемого потока с различными энергиями, лежащими в пределах энергетического разброса ΔЕс и сосредоточенными вблизи значения энергии Ер зондирующего пучка. Свертка сигналов, поступающих от различных участков ПЧД, с заранее известной формой энергетического распределения электронов зондирующего пучка позволит восстановить истинную форму зависимости коэффициента упругого отpажения от энергии R(Ep) одновременно во всем диапазоне (Ер - 0,5 ΔЕс; Еp + 0,5 ΔЕс), или в более узком диапазоне энергий зондирующего потока, сосредоточенной вблизи Ер. Применение предлагаемого способа без учета применения ПЧД позволяет увеличить интенсивность потока в 10-100 раз, а использование ПЧД на выходе анализатора - дополнительно увеличить интенсивность анализируемого (регистрируемого в каждый момент времени) сигнала в десять раз. Таким образом, в целом скорость записи спектров R(Ep) повышается в 100 - 1000 раз.
название | год | авторы | номер документа |
---|---|---|---|
СПЕКТРОМЕТР ЗАРЯЖЕННЫХ ЧАСТИЦ | 1994 |
|
RU2076387C1 |
ПОРТАТИВНЫЙ РЕНТГЕНОСПЕКТРАЛЬНЫЙ ДАТЧИК И СПОСОБ ЕГО РЕАЛИЗАЦИИ | 1992 |
|
RU2065599C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КРИСТАЛЛИЧЕСКОЙ ФАЗЫ В АМОРФНЫХ ПЛЕНКАХ НАНОРАЗМЕРНОЙ ТОЛЩИНЫ | 2012 |
|
RU2509301C1 |
ЭНЕРГОМАСС-СПЕКТРОМЕТР ВТОРИЧНЫХ ИОНОВ | 1990 |
|
RU2020645C1 |
ЭЛЕКТРОСТАТИЧЕСКИЙ ЭНЕРГОАНАЛИЗАТОР С УГЛОВЫМ РАЗРЕШЕНИЕМ | 2009 |
|
RU2448389C2 |
Способ анализа ионов по энергиям, массам и зарядам и устройство для его осуществления | 2019 |
|
RU2708637C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА И ТОЛЩИНЫ ПОВЕРХНОСТНОЙ ПЛЕНКИ ТВЕРДОГО ТЕЛА ПРИ ВНЕШНЕМ ВОЗДЕЙСТВИИ НА ПОВЕРХНОСТЬ | 2012 |
|
RU2522667C2 |
СПОСОБ АНАЛИЗА ЗАРЯЖЕННЫХ ЧАСТИЦ ПО ЭНЕРГИЯМ И МАССАМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2459310C2 |
ЭЛЕКТРОСТАТИЧЕСКИЙ ЭНЕРГОАНАЛИЗАТОР ЗАРЯЖЕННЫХ ЧАСТИЦ | 2011 |
|
RU2490620C1 |
ЭЛЕКТРОСТАТИЧЕСКИЙ АНАЛИЗАТОР ЭНЕРГИЙ ЗАРЯЖЕННЫХ ЧАСТИЦ | 2011 |
|
RU2490750C1 |
Использование: относится к физической электронике и может быть использовано в электронных спектрометрах, предназначенных для записи зависимости коэффициента упругого отражения электронов от их энергии с угловым разрешением порядка нескольких десятых долей градуса и меньше, энергетическим разрешением порядка нескольких десятых долей электронвольта и меньше. Сущность изобретения состоит в том, что первичный поток электронов с энергетическим разбросом ΔEp= 0,2-0,6 эВ , формируемый электронной пушкой, направляют в изофокусирующую линзовую систему, замедляют (ускоряют) с ее помощью в K1= 1-100 раз по энергии, одновременно фокусируя на исследуемой мишени. Пучок, отраженный от мишени, фокусируют с помощью второй изофокусирующей системы на входной диафрагме энергоанализатора, одновременно ускоряя или замедляя его в K2= 1-100 раз до энергии настройки анализатора Ea . Далее электроны анализируемого потока, прошедшие через энергоанализатор, регистрируются при попадании на коллектор (ПЧД). Энергоанализ электронов производится в диапазоне энергий ΔE порядка величины энергетического разброса в первичном пучке ΔEp . 1 з.п.фл-ы.
e (Uc ± Uo ) .
где l - заряд электрона, Кл;
Uс - измеряемый потенциал катода относительно мишени, В;
U0 - постоянный сдвиг потенциала, В, в пределах 0≅U0≅ΔEc/2e ,
а формирование первичного пучка осуществляют из условий отсутствия зависимости формы кривой его энергетического спектра от сдвига по шкале энергий.
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
KesmodelL | |||
L | |||
Neu high resolution electrou spectrowefes fos susface vibratioual analysis | |||
J | |||
Vae, Sce | |||
and Terhuol | |||
Гребенчатая передача | 1916 |
|
SU1983A1 |
Авторы
Даты
1994-09-30—Публикация
1990-10-02—Подача