Изобретение относится к газовому анализу и может быть использовано в аналитическом приборостроении, а также для контроля загрязнения окружающей среды.
Известен инфракрасный газоанализатор, содержащий источник света и последовательно расположенные сферические зеркала, измерительный и эталонный каналы, инфракрасный светофильтр, приемно-регистрирующую систему [1].
К недостаткам известного устройства относятся ограниченные чувствительность и точность из-за неполного использования светового пучка вследствие эффектов многократного рассеяния, а также сложность юстировки системы сферических зеркал.
Наиболее близким техническим решением к предложенному является инфракрасный газоанализатор, содержащий оптически сопряженные источник излучения, многоходовую зеркальную кювету, именуемую в дальнейшем системой, с входными и выходными окнами, систему зеркал для разделения потока излучения от источника по рабочему и сравнительному каналам и сведения его на приемник излучения [2].
Недостатками данного газоанализатора являются ограниченные чувствительность и точность, обусловленные низкой светосилой системы сферических зеркал из-за потерь потока излучения на рассеяние, а также из-за уменьшения его мощности вследствие разделения на два идентичных пучка, сложность конструкции.
Цель изобретения - повышение чувствительности и точности, а также упрощение конструкции газового анализатора.
Цель достигается тем, что в известном инфракрасном газоанализаторе, содержащем оптически сопряженные источник излучения, многоходовую зеркальную систему с входными и выходными окнами и приемник излучения, многоходовая зеркальная система выполнена в виде интегрирующей сферы, на внутреннюю поверхность которой нанесен слой материала, максимально отражающего в ИК-области спектра, например алюминия.
Предлагаемая сфера содержит отверстия для оптического входа и выхода, а также отверстия для заполнения ее внутренней полости анализируемым газом.
Анализ патентной и научно-технической литературы показал, что обнаружен ряд технических решений, содержащих признаки, отличающие заявляемое решение от прототипа. Однако совокупность признаков не известна.
За счет выполнения многоходовой зеркальной системы в виде интегрирующей сферы заявляемое техническое решение проявляет новые свойства, а именно появилась возможность полного использования светового пучка, что приводит к повышению точности и чувствительности, а также упрощению конструкции.
На чертеже представлена схема предлагаемого инфракрасного газоанализатора.
Инфракрасный газоанализатор содержит источник 1 излучения, интегрирующую сферу 2 с оптически несоосными входом 3 и выходом 4, а также системой заполнения анализируемого газа, инфракрасный светофильтр 5, приемник 6 излучения.
Предлагаемый газоанализатор работает следующим образом.
Излучение от источника 1 (например, для анализируемого газа SO2служит полупроводниковый лазер, построенный на основе PbS0,82Se0,18, работающий в диапазоне длин волн 8,7-9,1 мкм, в котором наблюдаются наиболее характерные и интенсивные линии поглощения SO2) поступает в интегрирующую полость сферы 2, где и взаимодействует либо с воздухом в первом случае (для градуировки шкалы приемника 6 излучения), либо с анализируемым газом - во втором случае. При этом показания приемника излучения в зависимости от концентрации исследуемой газовой среды изменяются. Мерой концентрации измеряемого газа является изменение интенсивности излучения в нем по отношению к интенсивности излучения в воздухе. При этом воздушная среда без агрессивных включений в указанном ИК-диапазоне практически спектрально не проявляет себя. Концентрация газа может быть найдена также по формуле
Cmin = где L - путь пучка в газе (находится расчетным путем с учетом эффективного коэффициента отражения ρ' внутренней стенки сферы), и равен ≈ 15 м;
ρ= где S1 - рабочая; S - полная поверхность сферы; ρ' - коэффициент отражения слоя нанесенного материала (наиболее эффективным покрытием внутренней поверхности сферы служит слой алюминия либо серебра (Розенберг Г. В. Оптика тонкослойных покрытий. М.: Физматгиз, 1958. с. 570) толщиной 40-50 нм, коэффициент отражения которых в данном диапазоне спектра максимален и близок к 1); К(ν)≈ 10 см-1 - показатель экстенкции для сильных полос SO2, тогда
C 10-3÷10-2 мг/м3 что полностью согласуется с ПДК (предельно допустимыми концентрациями) для данного газа согласно ГОСТ 17.2.3.02-78.
В качестве приемника излучения в данном случае используется германиевый фоторезистор с максимальной спектральной чувствительностью в области спектра, формируемой с помощью ИК-светофильтра 5.
Оптимальные размеры сферы и ее рабочих отверстий рассчитаны согласно (Сахновский М.Ю. О возможностях использования интегрального шарового фотометра в измерениях диффузного отражения по абсолютной методике // Оптика и спектроскопия. Т. 62, вып. 3, 1987, с. 692-697) и составляет соответственно:
dсферы 10 см; ΣSотв ≈2 см2
Погрешность определения концентрации газа предлагаемым газоанализатором составляет не более 1%.
По сравнению с прототипом заявляемое решение за счет использования интегрирующей сферы позволяет наиболее полно использовать поток излучения из-за увеличения кратности его прохождения сквозь анализируемую среду вследствие интегрирующих свойств внутренней поверхности сферы (закон Сумпнера), что приводит к повышению чувствительности и точности, а также упрощению конструкции газового анализатора.
название | год | авторы | номер документа |
---|---|---|---|
ОПТИЧЕСКИЙ АБСОРБЦИОННЫЙ ГАЗОАНАЛИЗАТОР | 2021 |
|
RU2778205C1 |
ОПТИЧЕСКИЙ АБСОРБЦИОННЫЙ ГАЗОАНАЛИЗАТОР | 2004 |
|
RU2262684C1 |
ГАЗОАНАЛИЗАТОР И ОПТИЧЕСКИЙ БЛОК, ИСПОЛЬЗУЕМЫЙ В НЕМ | 2010 |
|
RU2451285C1 |
ВОЛОКОННО-ОПТИЧЕСКИЙ ГАЗОАНАЛИЗАТОР | 1994 |
|
RU2091764C1 |
Инфракрасный газоанализатор | 1983 |
|
SU1171699A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПОНЕНТОВ СМЕСИ ГАЗОВ | 2023 |
|
RU2804257C1 |
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГАЗООБРАЗНЫХ ВЕЩЕСТВ | 2014 |
|
RU2598694C2 |
Инфракрасный газоанализатор | 1979 |
|
SU882308A1 |
ДВУХКОМПОНЕНТНЫЙ ОПТИЧЕСКИЙ ГАЗОАНАЛИЗАТОР | 2002 |
|
RU2244291C2 |
ИНФРАКРАСНЫЙ ОПТИЧЕСКИЙ ГАЗОАНАЛИЗАТОР | 2015 |
|
RU2596035C1 |
Назначение: изобретение относится к газовому анализу и может быть использовано в аналитическом приборостроении, а также для контроля загрязнения окружающей среды. Сущность изобретения: инфракрасный газоанализатор содержит источник излучения, от которого световой пучок попадает в интегрирующую полость сферы, где и взаимодействует с анализируемым газом. При этом показания приемника излучения в зависимости от концентрации исследуемой газовой среды будут изменяться. Для многоскратного прохождения потока излучения в газовой среде оптический вход и выход выполнены несоосными, а также не проходящими через центр сферы. Инфракрасный светофильтр служит для формирования области спектра, в которой наиболее чувствителен приемник излучения. 1 ил.
ИНФРАКРАСНЫЙ ГАЗОАНАЛИЗАТОР, содержащий оптически сопряженные источник излучения, многоходовую систему, светофильтр и приемник излучения, отличающийся тем, что, с целью повышения светосилы и чувствительности к токсичному газу SO2, многоходовая система выполнена в виде интегрирующей сферы с внутренним покрытием из алюминия или серебра, причем оптический вход и выход расположены на разных осях, не проходящих через центр сферы.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Инфракрасный газоанализатор | 1983 |
|
SU1171699A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1994-10-30—Публикация
1991-08-09—Подача