Изобретение относится к полупроводниковой технике и может быть использовано при создании фотоприемников дальнего инфракрасного диапазона с большой обнаружительной способностью.
Известен способ создания варизонных структур на основе твердых растворов CdxHg1-xTe методом молекулярно-лучевой эпитаксий [1].
Способ позволяет получать варизонные структуры с положительным и отрицательным градиентом ширины запрещенной зоны. Однако до настоящего времени не существует отработанной технологии получения варизонных структур с заданным градиентом ширины запрещенной зоны. Это обусловлено тем, что метод требует применения больших потоков ртутьсодержащих компонентов (на 3-4 порядка выше потоков компонентов, содержащих Cd или Te) из-за малого коэффициента прилипания атомов Hg. Такое несоответствие требуемых величин потоков является принципиальной трудностью при выращивании варизонных структур с управляемой величиной градиента ширины запрещенной зоны, и поэтому этот метод до настоящего времени используется для выращивания эпитаксиальных структур определенного состава.
Наиболее близким техническим решением является способ создания пленок твердых растворов Cdx Hg1-x Te с варизонной структурой, включающий нанесение на подложку из CdTe эпитаксиального слоя HgTe и отжиг системы в парах Hg [2]. Однако данный способ позволяет создавать пленки лишь с убывающей к поверхности шириной запрещенной зоны ( ▿ Eg > 0).
Целью изобретения является осуществление возможности создания варизонной структуры с плавно возрастающей шириной запрещенной зоны к поверхности полупроводника.
Цель достигается тем, что на пластину из Cdx Hg1-x Te наносят эпитаксиальный слой CdTe толщиной 100-50000 , затем на обе cтороны плаcтины c эпитакcиальным cлоем наноcят капсулирующий диэлектрический слой, в котором отсутствует диффузия ртути кадмия и теллура, и проводят отжиг при температуре 100-600оС.
Чтобы получить структуру с улучшенными фотоэлектрическими свойствами, проводят дополнительный отжиг при температуре 100-250оС, если температура основного отжига находится в интервале 350-600оС, и удаляют поверхностный слой полупроводниковой пластины до достижения рабочей области варизонной структуры.
В качестве диэлектрического слоя для улучшения капсулирования предлагается использовать слой диоксида кремния, нитрида кремния или сочетание этих слоев.
Взаимная диффузия на границе раздела CdTe - CdxHg1-x Te приводит к "расплыванию" резкой границы, создавая варизонную структуру с плавно меняющейся шириной запрещенной зоны. Взаимная диффузия имеет активационный характер: чем больше температура, тем больше и коэффициент взаимной диффузии. Поэтому для создания варизонной структуры определенной толщины, а, следовательно, и значения ▿ Eg, необходимо тем дольше проводить отжиг, чем меньше температура отжига. В силу сильной зависимости D от T и X получение заданного изменения величины X (или градиента ширины запрещенной зоны) в варизонной области возможно путем ступенчатых отжигов при разной температуре. Определить необходимую зависимость температуры отжига от времени можно либо численным решением диффузионного уравнения, либо эмпирическим способом. В последнем случае, определяя на спутниковых образцах величину X (по положению пиков интенсивности в спектрах отражения) при послойном стравливании, строят зависимость X = f (Z), находят соответствующие значения ширины запрещенной зоны и проводят необходимую коррекцию для последующего отжига.
Толщина варизонного слоя определяется из известного выражения для длины диффузии. Зависимость коэффициента самодиффузии D (X, T) от состава X и температуры T для Cdx Hg1-x Te приведена в таблице.
Введение дополнительного отжига обусловлено необходимостью устранения дефектов, появляющихся во время основного отжига при температурах более 350оС.
Пример реализации.
На полупроводниковую пластину из Cd0,2 Hg0,8 Te при температуре 120оС в вакууме не хуже 5 ˙ 10-8 Па методом молекулярно-лучевой эпитаксии нанесен слой CdTe толщиной 2,1 мкм. Затем с двух сторон был нанесен капсулирующий слой пиролитического SiO2 толщиной 2000 при температуре ≈ 100оС и произведен отжиг при 350оС в течение 10 ч и дополнительный отжиг при 200оС в течение 1 ч.
название | год | авторы | номер документа |
---|---|---|---|
ФОТОЧУВСТВИТЕЛЬНАЯ СТРУКТУРА | 2008 |
|
RU2373606C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЧУВСТВИТЕЛЬНОЙ СТРУКТУРЫ | 2008 |
|
RU2373609C1 |
ДВУХЦВЕТНЫЙ ФОТОПРИЕМНИК С ЭЛЕКТРОННЫМ ПЕРЕКЛЮЧЕНИЕМ ДИАПАЗОНОВ | 1991 |
|
SU1823722A1 |
ФОТОЧУВСТВИТЕЛЬНАЯ К ИНФРАКРАСНОМУ ИЗЛУЧЕНИЮ СТРУКТУРА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2021 |
|
RU2769232C1 |
ФОТОРЕЗИСТОР НА ОСНОВЕ ГЕТЕРОЭПИТАКСИАЛЬНОЙ СТРУКТУРЫ CdHgTe (ВАРИАНТЫ) | 2003 |
|
RU2244366C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СТРУКТУР ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК ТИПА АВ | 1984 |
|
SU1840208A1 |
Способ пассивации поверхности теллурида кадмия-ртути | 2015 |
|
RU2611211C1 |
ФОТОПРИЕМНОЕ УСТРОЙСТВО | 2003 |
|
RU2244365C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ N - P-ПЕРЕХОДОВ В МОНОКРИСТАЛЛАХ CDHGTE | 1992 |
|
RU2062527C1 |
ФОТОДИОДНЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ | 2006 |
|
RU2310949C1 |
Использование: изобретение может быть использовано при создании фотоприемников дальнего инфракрасного диапазона с большой обнаружительной способностью. Сущность изобретения: на пластину из CdxHg1-x наносят эпитаксиальный слой CdTe, затем на обе стороны пластины наносят капсулирующий диэлектрический слой, проводят отжиг и удаляют диэлектрический слой. 2 з.п. ф-лы, 1 табл.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Физика соединений А "В" | |||
Под ред | |||
Георгобиани А.Н., Шейнкмана М.К., М.: Наука, 1986, с.320. |
Авторы
Даты
1994-10-30—Публикация
1990-08-29—Подача