Изобретение относится к аппаратурному оформлению стадий очистки отходящих газов ферментеров и может быть использовано в микробиологической, гидролизной, ферментной промышленности для очистки газовоздушных выбросов ферментационного оборудования.
Известны установки абсорбционной очистки отходящих газов ферментеров АДР-900, содержащие скрубберы Вентури, циклоны для мокрой очистки отходящего воздуха и вентиляторы [1]. Установки решают лишь задачу переноса нежелательных компонентов из газовой фазы в жидкую без химического их разложения.
Известны установки для очистки сточных вод озонированием [2], в которых происходит химическое изменение нежела- тельных компонентов. Однако установки не окисляют вредные примеси, содержащиеся в газе.
Наиболее близкой к предлагаемой является установка для очистки газов, содержащих меркаптан с использованием озоно-воздушной смеси [3]. Установка позволяет окислять выбросные газы как в газовой, так и в жидкой фазе. В качестве катализатора используют ионы серебра, которые затем необходимо удалять из раствора, что связано с определенными затратами. Известная установка не позволяет окислять многокомпонентный состав примесей, который содержится в выбросных газах ферментационных отделений.
Целью изобретения является очистка газовоздушных выбросов феpментеров от продуктов метаболизма как в газовой, так и жидкой фазах и повышение степени использования озона.
Цель достигается тем, что в установке для очистки и дезодорации газовоздушных выбросов ферментеров, содержащей абсорбер с подключенным к нему трубопроводом очищаемых газов, насадочный абсорбер озона, соединенный с трубопроводом рециркуляции жидкости из абсорбера и насосом и нагнетательным трубопроводом с нижней частью абсорбера, озонатор, соединенный с насадочным абсорбером озона, согласно изобретению насадочный абсорбер озона соединен рециркуляционным трубопроводом для газа с трубопроводом очищаемых газов перед входом в абсорбер, установка имеет емкость для раствора щелочи, соединенную трубопроводами для газа и жидкости с нижней частью абсорбера и подключенную к насосу, в газовом пространстве абсорбера в зоне вихревой газожидкостной пленки вертикально укреплены ультрафиолетовые лампы, при этом по три лампы размещены в кварцевом кожухе, торцы которого снабжены патрубками для сжатого воздуха.
Сопоставительный анализ заявленного технического решения с прототипом и другими известными техническими решениями в данной и смежной областях техники позволило выявить признаки, отличающие заявленное техническое решение от прототипа - соединение насадочного абсорбера озона рециркуляционным трубопроводом для газа с трубопроводом очищаемых газов перед входом в абсорбер, снабжение установки емкостью для щелочи, соединенную трубопроводами для газа и жидкости с нижней частью абсорбера, размещение в газовом пространстве абсорбера ультрафиолетовых ламп по три в кварцевом кожухе, торцы которого имеют патрубки для сжатого воздуха. Таким образом, заявленное техническое решение соответствует критерию "Новизна".
В известных схемах по очистке сточных вод озонированием [2] в отличие от заявленной необходимо предусматривать стадию очистки газов, выходящих из абсорбера, для удаления остатков озона. По сравнению с заявленным известные технические решения не обеспечивают очистку многокомпонентного состава примесей, содержащих предельные, непредельные углеводороды, н-парафины, ароматические соединения, альдегиды и кетоны, которые содержатся в газовоздушных выбросах ферментационных отделений заводов БВК. Летучие продукты метаболизма при микробиологи- ческом синтезе в известных схемах очистки, использующих скрубберы Вентури [1], уносятся с газами. Это позволяет сделать вывод о соответствии заявленного технического решения критерию "Существенные отличия".
Соединение насадочного абсорбера озона рециркуляционным трубопроводом для газа с трубопроводом очищаемых газов перед входом в абсорбер позволяет провести полную очистку газовоздушных выбросов ферментеров от продуктов метаболизма как в газовой, так и в жидкой фазе, и повысить степень использования озона до 98-99%.
Снабжение установки емкостью для раствора щелочи, соединенной с абсорбером трубопроводами для газа и жидкости, увеличивает время контакта вредных примесей с озоном. Проведение процесса окисления озоном в щелочном растворе позволяет окислить наиболее трудноокисляемые альдегиды и кетоны, содержащиеся в газовоздушных выбросах ферментеров, до конечных продуктов окисления - карбоновых кислот, углекислоты и воды.
В известных технических решениях использовались ультрафиолетовые лампы, размещенные по одной в кварцевом кожухе. Обычно их устанавливают либо в жидкости, барботируя газ, либо в газе. Заявленное техническое решение в отличие от известных обнаруживает новое свойство - окисление осуществляется в газовом пространстве в вихревой газожидкостной пленке. Размещение ламп по три лампы в кварцевом кожухе, при котором лампы обдуваются сжатым воздухом, дает увеличение интенсивности излучения на единицу поверхности вихревой газожидкостной пленки, в которой наиболее эффективно ультрафиолетовое излучение, и предотвращает лампы от перегрева.
Соединение насадочного абсорбера озона рециркуляционным трубопроводом для газа с трубопроводом очищаемых газов перед входом в абсорбер и контактирование насыщенной озоном жидкости с газовыми выбросами в вихревой газожидкостной пленке в абсорбере способствуют дезодорации газовых выбросов.
На чертеже изображена установка для очистки и дезодорации газовоздушных выбросов ферментеров.
Установка содержит абсорбер 1, к которому подключен трубопровод 2 очищаемых газов, поступающих от ферментера. Абсорбер соединен трубопроводами 3 и 4 для газа и жидкости соответственно с емкостью 5 для щелочного раствора. Емкость 5 через насос 6 и нагнетательный трубопровод 7 соединена с нижней частью насадочного абсорбера 8 озона. Верхняя часть насадочного абсорбера озона соединена рециркуляционным трубопроводом 9 для газа с трубопроводом 2 очищаемых газов перед входом в абсорбер 1 и циркуляционным трубопроводом 10 для жидкости с верхней частью абсорбера 1. В зоне вихревой газожидкостной пленки в газовом пространстве абсорбера 1 установлены кварцевые кожухи 11, в которых размещены по три ультрафиолетовые лампы 12. Кожухи снабжены торцовыми крышками 13, в которых имеются патрубки 14 для сжатого воздуха. Насадочный абсорбер 8 озона соединен трубопроводом 15 с озонатором 16. Емкость 5 снабжена в нижней части барботером 17.
Установка работает следующим образом.
Насыщенный озоном до 10-12 г/м3 газовый поток поступает из озонатора 16 в насадочный абсорбер 8, в котором озоно-воздушная смесь обрабатывается жидкостью, насыщая ее озоном. В качестве жидкости используют оборотную воду. Орошение насадочного абсорбера 8 озона осуществляется в прямотоке газа и жидкости щелочным раствором, поступающим из емкости 5 посредством насоса 6. Насыщенный озоном раствор поступает по циркуляционному трубопроводу 10 в верхнюю часть абсорбера 1 для образования вихревой газожидкостной пленки. Бедная озоно-воздушная смесь из верхней части насадочного абсорбера 8 озона по рециркуляционному трубопроводу 9 для газа поступает в трубопровод 2 очищаемых газов перед входом в абсорбер 1. Таким образом, газовоздушные выбросы от ферментера сначала обрабатывают озоном в газовой фазе, где окисляются наиболее легкоокисляемые в газовой фазе примеси и осуществляется дезодорация газовых выбросов, а далее поступают в абсорбер 1, в котором газовоздушные выбросы обрабатываются жидкостью, предварительно насыщенной озоном. Происходит окисление нежелательных компонентов и в газовой, и в жидкой фазе, имеющее то преимущество, что ряд вредных примесей лучше окисляется озоном в газовой фазе, другие - в жидкой. Происходит ступенчатое снижение концентрации озона (или окисление вредных примесей) в жидкой фазе, затем в газовой фазе, и далее в вихревой газожидкостной пленке. В дополнение к этому щелочной раствор активно поглощает окисленные продукты метаболизма микробиологического синтеза - карбоновые кислоты, которые при полном окислении разлагаются на углекислоту и воду. Из нижней части абсорбера 1 жидкость по трубопроводу 4 поступает в емкость 5. Выделившийся в емкости газ после десорбции воздухом через барботер 17, содержащий остатки озона, поступает по трубопроводу 3 в абсорбер 1, контактируя в противотоке со стекающей пленкой, дополнительно окисляя вредные примеси. Ультрафиолетовые лампы имеют каталитическое действие и способствуют ускорению процесса окисления нежелательных компонентов. Расположение ламп 12 в вихревой газожидкостной пленке абсорбера 1 интенсифицирует процесс окисления, поскольку наиболее эффективно УФ-излучение в пленке толщиной 3-4 мм. Подача киповского сжатого воздуха в патрубки 14 кварцевых кожухов 11 предотвращает лампы от перегрева, увеличивая срок их службы.
Использование предлагаемого технического решения обеспечивает по сравнению с существующими следующие преимущества. Полностью очищаются и дезодорируются газовоздушные выбросы ферментеров, содержащие многокомпонентный состав примесей, за счет окисления как в газовой, так и в жидкой фазе при повышении степени использования озона до 98-99%. В выходящих газовоздушных выбросах клетки микроорганизмов полностью отсутствуют. Использование в качестве промывной жидкости щелочного раствора позволяет улавливать наиболее трудноокисляемые продукты органического синтеза до карбоновых кислот, и не сбрасывать их в атмосферу. Применение ультрафиолетовых ламп стимулирует быстрейшее окисление вредных примесей и снижает исходные концентрации озона и расход озона (мг О3 на кмоль окисляемого вещества). Поскольку высока степень использования озона, возможна работа установки при малых концентрациях озона в газовой и жидкой фазе. Отпадает лишняя стадия очистки - удаление остатков озона на выходе из абсорбционных аппаратов.
название | год | авторы | номер документа |
---|---|---|---|
УСТАНОВКА ДЛЯ ОЧИСТКИ ГАЗОВОЗДУШНЫХ ВЫБРОСОВ ЛИТЕЙНОГО ПРОИЗВОДСТВА | 1995 |
|
RU2100058C1 |
СПОСОБ И УСТАНОВКА ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ | 2018 |
|
RU2686037C1 |
СПОСОБ ОРГАНИЗАЦИИ ПОТОКОВ В МАССООБМЕННЫХ АППАРАТАХ | 1991 |
|
RU2016617C1 |
МЕМБРАННАЯ УСТАНОВКА | 1996 |
|
RU2114688C1 |
ВИХРЕВАЯ ПЫЛЕУЛАВЛИВАЮЩАЯ УСТАНОВКА | 1991 |
|
RU2006294C1 |
СЕПАРАТОР | 1991 |
|
RU2014110C1 |
МЕМБРАННЫЙ АППАРАТ | 1996 |
|
RU2113891C1 |
Гидродинамическая установка обработки загрязненной воды | 2018 |
|
RU2725234C2 |
СПОСОБ РАБОТЫ ДВУХТОПЛИВНОЙ СИСТЕМЫ ПИТАНИЯ ГАЗОВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2101540C1 |
СПОСОБ ОБЕЗВОЖИВАНИЯ ОСАДКОВ | 1991 |
|
RU2014288C1 |
Изобретение относится к аппаратурному оформлению стадий очистки отходящих газов ферментеров и может быть использовано в микробиологической, гидролизной, ферментной промышленности для очистки газовоздушных выбросов ферментационного оборудования. Сущность изобретения: установка содержит абсорбер 1 с подключенным к нему трубопроводом 2 очищаемых газов от ферментера. Абсорбер соединен трубопроводами 3 и 4 для газа и жидкости с емкостью 5 для щелочного раствора. Емкость 5 соединена трубопроводом 7 с насадочным абсорбером 8 озона, верхняя часть которого подключена рециркуляционным трубопроводом 9 для газа к трубопроводу 2 очищаемых газов перед входом в абсорбер 1. Абсорбер 8 озона соединен циркуляционным трубопроводом 10 с верхней частью абсорбера 1. В газовом пространстве абсорбера 1 установлены кварцевые кожухи, в которых размещены по три ультрафиолетовые лампы. Кожухи снабжены торцовыми крышками и имеют патрубки 14 для сжатого воздуха. Насадочный абсорбер 8 озона соединен трубопроводом 15 с озонатором 16. 2 з.п.ф-лы, 1 ил.
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Kirchner K., Zitzenburger W | |||
Oxidising seribbing of gas using ozone - reaction and absortion kinetics of the ozone - ethul mercoptan sustem | |||
Chem | |||
Eng | |||
Sciense, Vol | |||
Пишущая машина | 1922 |
|
SU37A1 |
Авторы
Даты
1994-11-30—Публикация
1992-05-21—Подача