УСТРОЙСТВО ДЛЯ ПРИЕМА М-ПОЗИЦИОННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ Российский патент 1994 года по МПК H04L27/22 

Описание патента на изобретение RU2024210C1

Изобретение относится к электросвязи.

Цель изобретения - повышение помехоустойчивости путем повышения точности формирования когерентной несущей частоты.

На фиг. 1 изображена структурная электрическая схема предложенного устройства; на фиг. 2 - векторные диаграммы, поясняющие его работу.

Устройство содержит первый-восьмой фазовые детекторы 1-8, логический блок 9, решающий блок 10, блок ждущих мультивибраторов 11, обнаружитель 12 информационного сигнала, коммутатор 13, блок 14 установки режима работы, первый-седьмой фазовращатели 151-157, формирователь когерентной несущей.

Устройство работает следующим образом.

На вход устройства поступает ФМн сигнал вида Ai(t) = AoCost + + , 0 ≅ t < T , (1) где А0, ω - амплитуда и несущая частота сигнала;
ϕс - начальная фаза сигнала;
Т - длительность элементарной информационной посылки сигнала;
i - случайный информационный параметр, принимающий значения i = 1, 5, i = 1, 3, 5, 7, i = соответственно для сигналов 2-ФМн, 4-ФМн, 8-ФМн.

На вторые входы фазовых детекторов 1-8 через фазовращатели 15 поступают колебания
(2) где ϕг - начальная фаза опорных колебаний. На выходах фазовых детекторов 1-8 формируются напряжения
(3) где Z0=
k - коэффициент передачи фазовых детекторов 1-8; Δ ϕг = ϕс - ϕг
При синхронизации устройства по несущей частоте Δ ϕ = 0. На выходах фазовых детекторов 1-8 образуются шестнадцать комбинаций напряжений в зависимости от того, какое значение принимает информационный параметр i. Величины и знак этих напряжений определяется выражениями (3) и иллюстрируется диаграммой на фиг. 2,а, из которой видно, что для различения информационных позиций сигналов (1) достаточно знать лишь знаки проекций векторов сигналов на координатные оси (2), а их величина не имеет значения. Поэтому отрицательные и нулевые напряжения на выходах фазовых детекторов 1-8 воспринимаются логическим блоком 9 как логический "0", а положительные - как логическая "1". Тогда работу логического блока 9 можно представлять в виде переключательных функций:
(4) Таким образом, основание U1, U3, U5, U7 и вспомогательные U2, U4, U6, U8координатные оси (2) разбивают область решений для элементов сигнала (1) на шестнадцать секторов (см. фиг. 2,а), каждому из которых соответствует свой выход Х логического блока 9. Такое построение позволяет реализовать в блоке 10 рациональное правило решений для сигналов 2-ФМн, 4-ФМн и 8-ФМн. При отсутствии вспомогательных координатных осей область решений имела бы секторы, в которых элементы 2ФМн и 4-ФМн сигналов не различимы (см. фиг. 2,б,в). Это снижало бы помехоустойчивость приема.

Рассмотрим работу блока решений 10, на входы которого поступают с выхода логического блока 9 кодовые комбинации, определяемые совокупностью переключательных функций (4).

В случае приема сигналов 8-ФМн блок решений 10 реализует правило
X (5) Для сигналов 4-ФМн правило решения имеет вид
(6) При приеме сигналов 2-ФМн реализуется правило
++ (7)
В выражениях (5), (6), (7) приняты следующие обозначения:
Si(M) - элемент сигнала, определяемый информационным параметром i и позиционностью сигнала М = 2, 4, 8;
Yn - информационный выход блока 10, n = .

Следовательно, выходы Y1, Yn, где n = !, ..., Yn, где n = , являются информационными выходами устройства соответственно для сигналов 2-ФМн, 4-ФМн и 8-ФМн.

Режим синхронизации устройства по несущей частоте с целью обеспечения когерентности колебаний опорного генератора 18 осуществляется следующим образом.

Кодовые комбинации вида (5) с информационных выходов 8-ФМн сигналов через коммутатор 13, который в исходном состоянии открыт напряжением, формируемым в блоке 14, поступает на входы формирователя 16, которыми являются входы дешифратора. Дешифратор представляет собой преобразователь код-напряжение, образующий на своих выходах напряжения:
U17-1= Cos; U17-2= Sin (8)
U17-1 = U17-2 = 0 при Yn' = 0, где n = . Последнее выражение будет учтено при описании работы устройства в режиме повышения точности восстановления когерентного несущей частоты.

С выхода фазового детектора 5 и с первого выхода дешифратора блока 16 на входы одного перемножителя блока 16 поступают соответственно напряжения Z2 и U17-1. На выходе этого перемножителя в этом случае формируется напряжение
U19= Z0Cos + + Cos
На входы другого перемножителя подаются соответственно напряжения Z6 и U17-2, при этом на его выходе напряжение имеет вид
U22= Z0Cos + Sin После суммирования напряжений U19, U22 на выходе сумматора блока 16 получаем
U20 = Z0sin Δ ϕ (9) Напряжение U20, поступая через фильтр блока 16 на вход опорного генератора блока 16, подстраивает фазу опорных колебаний на величину Δ ϕ и обеспечивает колебание когерентной несущей.

Рассмотрим алгоритм определения позиционности ФМн сигналов.

Признак позиционности ФМн сигналов очевиден из анализа выражений (3), (4) и (5), а именно: при поступлении на вход устройства сигнала 8-ФМн появление "1" возможно на всех выходах 1 блока 10: в случае сигнала 4-ФМн "1" образуются на соответствующих четырех выходах Y' блока 10; при 2-ФМн сигнале "1" появляются на соответствующих двух выходах Y' блока 10.

Кодовые комбинации Y6 '...Y13' c выходов логического блока 9 через блок 11 поступают на входы обнаружителя 12, который выполнен на семи логических элементах. При поступлении на вход соответствующего ждущего мультивибратора "1" напряжение на его выходе остается неизменным в течение времени t = (50. ..100)Т. Это позволяет одновременно наблюдать, на каких именно выходах блока 10 появились "1". Алгоритм работы обнаружителя 12 представлен в таблице. Такой алгоритм обнаружителя 12 позволяет однозначно определять позиционность принимаемого ФМн сигнала.

Если входной сигнал является восьмипозиционным, то состояние блока 14, состоящего из источника напряжения с уровнем логической "1" и двух ключей, соответствует исходному, т.е. ключи замкнуты, уровни "1" поступают на все управляющие входы коммутатора 13, все каналы которого открыты.

При четырехпозиционном сигнале один ключ размыкается, что приводит к закрытию второго, четвертого, шестого и восьмого каналов коммутаторов 13. В формирователе 16 устанавливается вариант синхронизации когерентной несущей, соответствующей сигналу 4-ФМн. При этом подстройка опорного генератора осуществлется только по элементам сигнала, когда i принимает значения 1, 3, 5, 7, причем векторы сигнала попадают в наиболее достоверные секторы области решений, а именно: 1,6; 4,5; 8,9; 12,13 (см. фиг. 2,а). Если векторы сигнала под действием помех попадают в любой другой сектор области решений, то напряжение на входы дешифратора блока 16 не поступает, что соответствует условию Yn' = 0 в выражении (8). На выходах дешифратора наблюдаются напряжения U17-1 = U17-2 = 0 и, следовательно, на выходе сумматора блока 16 управляющее напряжение отсутствует, т.е. при Δ ϕ = 0. Это повышает точность восстановления фазы когерентной несущей частоты.

Аналогично повышается точность формирования когерентного колебания при обработке сигнала 2-ФМн. Только в этом случае ключи блока 14 разомкнуты, на входы дешифратора блока 16 напряжение поступает лишь с двух выходов Y6', Y10' блока решений 10, на которых появляются наиболее достоверные решения.

Похожие патенты RU2024210C1

название год авторы номер документа
Приемник сигналов трехкратной фазовой манипуляции 1987
  • Беднарский Владимир Владимирович
SU1499522A2
Приемник сигналов трехкратной фазовой манипуляции 1987
  • Беднарский Владимир Владимирович
SU1424134A2
Приемник сигналов трехкратной фазовой манипуляции 1989
  • Довбня Виталий Георгиевич
SU1713114A2
ИЗМЕРИТЕЛЬ ФАЗ ОСЦИЛЛОГРАФИЧЕСКИЙ 2005
  • Попов Сергей Васильевич
  • Мельников Юрий Петрович
  • Мельников Алексей Юрьевич
RU2314543C2
ВСЕНАПРАВЛЕННЫЙ РАДИОПЕЛЕНГАТОР 1996
  • Верещагина Г.Н.
  • Ефимов С.В.
RU2126978C1
УСТРОЙСТВО ОДНОКРАТНОГО ФОРМИРОВАНИЯ СИГНАЛА ИЗОБРАЖЕНИЯ 1998
  • Смелков В.М.
  • Михайлов В.Н.
  • Маклашевский В.Я.
RU2146080C1
ВСЕНАПРАВЛЕННЫЙ РАДИОПЕЛЕНГАТОР 2001
  • Верещагина Г.Н.
  • Гуторов Р.В.
  • Ефимов С.В.
RU2208808C2
САМОФАЗИРУЮЩАЯСЯ АНТЕННАЯ РЕШЕТКА 2000
  • Коновалов А.Г.
  • Василенко А.И.
RU2177193C1
ВЕРТОЛЁТНЫЙ РАДИОЭЛЕКТРОННЫЙ КОМПЛЕКС 2015
  • Андреев Андрей Михайлович
  • Дикарев Виктор Иванович
  • Катькалов Валентин Борисович
  • Семёнов Кирилл Владимирович
  • Тавалинский Дмитрий Анатольевич
  • Шишкалов Андрей Владимирович
RU2600333C2
УСТРОЙСТВО ДЛЯ ВЫДЕЛЕНИЯ ТОНАЛЬНЫХ СИГНАЛОВ В КАНАЛАХ СВЯЗИ 2001
  • Егоров А.И.
  • Каленков Б.О.
  • Щевьев В.Н.
RU2214051C2

Иллюстрации к изобретению RU 2 024 210 C1

Реферат патента 1994 года УСТРОЙСТВО ДЛЯ ПРИЕМА М-ПОЗИЦИОННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ

Использование: в технике электросвязи. Сущность изобретения: устройство содержит фазовые детекторы (ФД) 1 - 8, логический блок 9, блок решений 10, блок ждущих мультивибраторов 11, обнаружитель информационного сигнала 12, коммутатор 13, блок установки режима работы 14, семь фазовращателей (ФВ) 15. Седьмой и восьмой ФД, шестой и седьмой ФВ, блок решений 10, коммутатор 13 и блок установки режима работы 14 введены с целью повышения помехоустойчивости. Кроме того, логический блок 9 выполнен восьмивходовым и имеет шестнадцать выходов. ФД образуют восемь каналов приема М-позиционных (М 2, 4, 8) фазоманипулированных сигналов, в котором опорные колебания обеспечиваются формирователем 16 и семью ФВ. Информационные посылки сигналов различаются по знакам напряжений на выходах ФД 1 - 8 с помощью блока 9, состоящего из двадцати четырех логических элементов. Решения для каждого вида сигнала формируются в блоке 10, содержащем двадцать элементов ИЛИ, путем соответствующего объединения выходов блока 9. Блок 11 выполняет функцию элементов памяти и обеспечивает работу обнаружителя 12, который определяет позиционность сигналов. В зависимости от вида сигналов блок 14 образует управляющие напряжения для коммутатора 13. Это позволяет изменять условия формирования когерентной несущей для каждого сигнала. 2 ил., 1 табл.

Формула изобретения RU 2 024 210 C1

УСТРОЙСТВО ДЛЯ ПРИЕМА М-ПОЗИЦИОННЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ, содержащее логический блок, первый, второй, третий и четвертый входы которого подключены к выходам соответственно первого, второго, третьего и четвертого фазовых детекторов, первые входы которых объединены и подключены к первым входам пятого и шестого фазовых детекторов, выходы которых соединены соответственно с первым и вторым входами формирователя когерентной несущей, вторые входы первого, второго, третьего, четвертого и пятого фазовых детекторов подключены к выходам соответственно первого, второго, третьего, четвертого и пятого фазовращателей, входы которых объединены и подключены к второму входу шестого фазового детектора и выходу формирователя когерентной несущей, блок ждущих мультивибраторов и обнаружитель информационного сигнала, отличающееся тем, что, с целью повышения помехоустойчивости путем повышения точности формирования когерентной несущей частоты, введены шестой и седьмой фазовращатели, седьмой и восьмой фазовые детекторы, коммутатор, решающий блок и блок установки режима работ, выход которого соединен с управляющим входом коммутатора, выход которого соединен с третьим входом формирователя когерентной несущей, вход которого соединен с входами шестого и седьмого фазовращателей, выходы которых соединены с вторыми входами соответственно седьмого и восьмого фазовых детекторов, выходы которых соединены соответственно с седьмым и восьмым входами логического блока, выход которого подключен к входу решающего блока, выходы которого соединены с сигнальными входами коммутатора и входами блока ждущих мультивибраторов, выход которого соединен с входом обнаружителя информационного сигнала, причем первые входы седьмого и восьмого фазовых детекторов подключены к первым входам пятого и шестого фазовых детекторов, выходы которых соединены соответственно с пятым и шестым входами логического блока.

Документы, цитированные в отчете о поиске Патент 1994 года RU2024210C1

Авторское свидетельство СССР N 1283995, кл
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 024 210 C1

Авторы

Беднарский В.В.

Чучин Е.В.

Даты

1994-11-30Публикация

1990-05-17Подача