СПОСОБ ПЛАЗМЕННОГО ТРАВЛЕНИЯ КОНТАКТНЫХ ОКОН В ИЗОЛИРУЮЩИХ И ПАССИВИРУЮЩИХ СЛОЯХ ДИЭЛЕКТРИКОВ НА ОСНОВЕ КРЕМНИЯ Российский патент 1994 года по МПК H01L21/308 

Описание патента на изобретение RU2024991C1

Изобретение относится к области производства БИС, а более конкретно - к плазменной технологии травления диэлектриков на основе кремния и может быть использовано при вскрытии контактных окон к алюминию в изолирующих и пассивирующих слоях указанных диэлектриков.

Известен способ травления окон в двуокиси кремния, описанный в патенте США N 4671840, НКИ 156-643 (1987 г.). Травление SiO2 по этому способу проводят в индивидуальном диодном реакторе в плазме смеси CF4 + CHF3 (5-25 об. % ). Недостатком этого способа является относительно низкая скорость травления двуокиси кремния, что обусловлено малым содержанием в плазме CF4 радикалов CF3, ответственных за травление SiO2 (Solid-State Electronics, 1976, v. 19, pp. 1039-1040). Другим недостатком этого способа является заметное осаждение фторуглеродных полимерных пленок на стенках реактора и склонность к их осаждению на обрабатываемых пластинах, что приводит, соответственно, к повышению превносимой дефектности и необходимости частых чисток реактора, а также к ухудшению контактирования со вскрытыми областями алюминия при формировании двухуровневой металлизации, контроле функционирования и сборке.

Известен способ травления SiO2, описанный в статье Р.С. Karulkar and M. A. Wirзbicki "Characteriзaytion of etching silicon dioxide and photoresist in a fluorocarbon plasma", J. Vac. Sci. Technol. B., v. 6, N 5, p. 1595 (1988) и принятый авторами за прототип. Согласно этому способу травление SiO2 осуществляют в индивидуальном диодном реакторе в плазме смеси CHF3-C2F6-O2-He с процентным содержанием кислорода от 12 до 35 об.%. При этом скорость травления SiO2 несколько увеличивается, но все же не превышает величины 0,47 мкм/мин в рекомендованном режиме травления при мощности 450 Вт, давлении 2,75 Торр (366 Па) и соотношении компонентов смеси, обеспечивающем необходимую величину селективности SiO2/фоторезист ( ≥ 1). Другим недостатком этого способа как и в вышеописанном патенте США N 4671840 является склонность к осаждению полимерных пленок на стенках реактора и обрабатываемых пластинах, что обусловлено наличием СНF3 в составе газовой смеси.

В связи с вышеизложенным предлагаемое изобретение решает задачу увеличения производительности труда и увеличения выхода годных схем на операции вскрытия контактных окон в изолирующих и пассивирующих слоях диэлектриков на основе кремния. Это достигается за счет того, что в способе плазменного травления диэлектриков в индивидуальном диодном реакторе в плазме на основе фторуглерода, кислорода и инертного газа травление проводят при давлении от 300 до 1200 Па, и плотности ВЧ-мощности от 4,0 до 8,0 Вт/см2 при использовании в качестве фторуглерода октафторпропана или гексафторэтана в смеси с гексафторидом серы или трифторидом азота, кислородом и гелием при следующем соотношении компонентов, об.%: октафторпропан или гексафторэтан 12-37 гексафторид серы или трифторид азота 1-4 кислород 1-4 гелий 55-86
Авторами установлено, что С3F8 и C2F6 дают наилучший результат по скорости травления среди всех фторуглеродных газов, поскольку газ с меньшим числом атомов углерода (СF4) дает при разложении в плазме меньшее число радикалов CF3, а газы с большим числом атомов углерода и водородсодержащие фторуглероды проявляют склонность к полимеризации, тем не менее, использование плазмы отдельных газов С3F8 и С2F6 оказалось неприемлемым ввиду невозможности получения полностью чистой поверхности окон после травления и заметного образования полимерных пленок на стенках реактора. Проведенные исследования показали, что введение в плазму C3F8 или C2F6 небольших добавок неорганических фторидов (SF6 или NF3) позволило увеличить скорость травления и несколько уменьшить образование полимерных пленок, но полностью чистого травления при этом добиться не удалось. Попытка решить проблему полимерообразования путем увеличения добавок SF6 или NF3 привела к ухудшению равномерности травления из-за ускоренного травления краев пластины. В связи с этим, авторами было исследовано влияние добавок кислорода и установлено, что хотя добавки кислорода к С3F8 или C2F6 в количестве до 15 об. % и позволяют несколько снизить полимерообразование в реакторе, но скорость травления при этом не растет, а при дальнейшем увеличении содержания кислорода она даже падает, и, кроме того, недопустимо падает селективность травления диэлектриков по отношению к фоторезисту.

В ходе дальнейших исследований было установлено, что использование трехкомпонентной смеси фторуглерода (С3F8 или C2F6), неорганического фторида (SF6 или NF3) и кислорода позволяет при определенном соотношении компонентов и режимах травления добиться увеличения скорости травления, снижения полимерообразования в реакторе и обеспечение чистой поверхности окон после травления при сохранении приемлемой равномерности травления ± 5-7%. Авторами было также установлено, что добавление к вышеуказанной трехкомпонентной смеси гелия в количестве от 55 до 86 об.% существенно не изменяет характеристики травления, но является полезным в отношении дальнейшего уменьшения полимеризации в реакторе, стабилизации разряда и некоторого увеличения селективности травления SiO2 к фоторезисту.

Предложенная авторами четырехкомпонетная плазма при высоком давлении является новым неизученным объектом и механизм достижения в ней указанного выше положительного эффекта далеко неочевиден. Этот совокупный положительный эффект не достигается ни одним из ранее известных приемов и его получение не может быть спрогнозировано на основе знаний, имеющихся в данной области техники. Совокупное воздействие состава плазмы и режимов травления, являющихся отличительными признаками предлагаемого технического решения, проявили в данном случае синергетический эффект, что позволяет говорить об изобретательском уровне решения задачи.

Данное изобретение поясняется фигурами 1 и 2. На фиг. 1 показан участок подложки со вскрытыми контактными окнами в слое диэлектрика. На фиг. 2 показан индивидуальный диодный реактор плазменного травления.

Ниже приведены примеры практического выполнения изобретения. В соответствии с фиг. 1 на полупроводниковой подложке со сформированными элементами (на фиг. 1 не показан) и металлизацией с верхним слоем из алюминия 1 формировали слой изолирующего или пассивирующего диэлектрика 2, например, путем осаждения SiO2 толщиной 1-1,2 мкм в плазме. В качестве других диэлектриков на основе кремния могут быть использованы фосфоросиликатное стекло, нитрид кремния, боросиликатное стекло. Поверх слоя SiO2 наносили слой фоторезиста 3 толщиной 1,8-2,0 мкм (использовалась марка фоторезиста ФП-051К) и фотолитографией, создавали в нем требуемый рисунок контактных окон 4. Затем фоторезист дубили при температуре 413 и 473оК в течение 20 мин, что приводило к формированию наклонного профиля боковых стенок фоторезиста в окнах. При формировании окон размерами 3 мкм вместо термического дубления использовали дубление в плазме гелия. Травление контактных окон 5 в слое О2 осуществляли в установке "Плазма-150К" с индивидуальным диодным реактором, показанным схематично на фиг. 2, где 1 - ВЧ-электрод, 2 - заземленный электрод, 3 - система подачи газа, 4 - подложка, 5 - ВЧ-генератор, 6 - изолятор, ВЧ-мощность частотой 13,56 МГц подавалась на верхний электрод, травимая подложка располагалась на нижнем заземленном электроде. Активный объем плазменного реактора при работе с пластинами диаметром 100 мм составлял около 70 см3.

Чистота поверхности алюминия в окнах после травления SiO2 оценивалась по величине пробоя поверхностной диэлектрической пленки на алюминии с помощью мелкого зонда, изготовленного из тонкой золотой проволоки. Данный метод оценки чистоты поверхности алюминия широко используется в производстве ИС, поскольку он является экспрессным и неплохо коррелирует с результатами анализа чистоты поверхности методом оже-спектропии.

Примеры реализации изобретения, охватывающие весь заявляемый диапазон режимов, приведены в таблице. Во всех приведенных режимах реализована высокая скорость травления SiO2 (0,7-1,2 мкм/мин), что выше, чем получено в этом же реакторе для смеси CHF3 - C2F6 - O2 - He предлагаемой в прототипе данной заявки. Контактные площадки алюминия после травления во всех режимах имели блестящую поверхность и напряжение пробоя золотого зонда 0 - 3 В, что обеспечивало хорошее контактирование при формировании двухуровневой металлизации, функциональном контроле и сборке. В то же время после травления по способу-прототипу напряжение пробоя золотого зонда достигало 7В и методом оже-спектропии на поверхности алюминия обнаруживалось завышенное содержание углерода и фтора (18 и 6 ат.%, соответственно), что приводит к плохому контактированию на последующих операциях. Следует отметить, что селективность травления SiO2 по отношению к фоторезисту в заявляемом изобретении составляла от 1,2 до 1,8, что обеспечивало необходимый наклонный профиль окон в SiO2 путем переноса исходного профиля фоторезистивной маски и в то же время позволяло сохранить достаточно для маскирования остаточную толщину фоторезиста.

При использовании процентного содержания компонентов, давления и мощности за пределами указанных в таблице значений происходило ухудшение выходных параметров процесса травления.

При проведении процесса травления двуокиси кремния при давлении более 1200 Па и менее 500 Па происходит увеличение неравномерности и снижение скорости травления. При проведении травления при ВЧ-мощности менее 600 Вт мала производительность процесса, а при проведении травления при мощности более 900 Вт происходит деструкция фоторезиста из-за локальных пробоев ВЧ-разряда. При содержании фторуглерода, например, C3F8 или C2F6, в плазме менее 12 об. % или при содержании О2 в плазме более 4 об.% недопустимо уменьшается селективность травления двуокиси кремния по отношению к фоторезисту, а при содержании С3F8 или C2F6 более 37 об.% или при содержании О2 менее 1 об. % происходит осаждение полимера на стенках реактора и загрязнение травимой поверхности. При содержании в плазме добавок неорганического фторида, например, SF6 или NF3, менее 1 об.% уменьшается скорость травления SiO2, а при содержании в плазме добавок SF6 или NF3 более 4 об.% происходит приемлемое ухудшение равномерности травления и селективности по отношению к фоторезисту. Добавка гелия в количестве менее 55 об.% не приводит к положительному воздействию, а при добавках гелия более 86% снижается скорость травления.

Предложенный способ плазменного травления найдет применение в технологии БИС и СБИС при формировании контактных окон в пассивирующих слоях диэлектриков на основе кремния.

По сравнению с базовым процессом плазменного травления изолирующих и пассивирующих слоев в установках группового реактивного ионного травления 08ПХО-100Т-005 и 08ПХО-100Т-004 процесс плазменного травления этих слоев в соответствии с настоящей заявкой в установке индивидуального травления "Плазма-150К" позволил увеличить производительность труда и выход годных на 15-20%.

Похожие патенты RU2024991C1

название год авторы номер документа
СПОСОБ ПЛАНАРИЗАЦИИ ИНТЕГРАЛЬНЫХ СХЕМ 1992
  • Близнецов В.Н.
  • Гущин О.П.
  • Железнов Ф.К.
  • Трусов А.А.
  • Ячменев В.В.
RU2024992C1
СПОСОБ ПЛАЗМЕННОГО ТРАВЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ СЛОЕВ SiC-SiN 2001
  • Алексеев Н.В.
  • Еременко А.Н.
  • Колобова Л.А.
  • Клычников М.И.
  • Ячменев В.В.
RU2211505C2
СПОСОБ ИЗГОТОВЛЕНИЯ МЕЖСОЕДИНЕНИЙ ИНТЕГРАЛЬНЫХ СХЕМ 1990
  • Загороднев И.А.
  • Кузнецов В.О.
  • Сулимин А.Д.
  • Фатькин А.А.
  • Фишель И.Ш.
  • Шишко В.А.
SU1695777A1
СПОСОБ ФОРМИРОВАНИЯ ПЕРЕХОДНЫХ КОНТАКТНЫХ ОКОН 2001
  • Алексеев Н.В.
  • Ячменев В.В.
  • Еременко А.Н.
  • Новиков А.В.
  • Колобова Л.А.
RU2202136C2
СПОСОБ РЕАКТИВНОГО ИОННОГО ТРАВЛЕНИЯ ПОЛИКРЕМНИЯ ДО SiO И МОНОКРЕМНИЯ 2000
  • Красников Г.Я.
  • Ячменев В.В.
  • Алексеев Н.В.
  • Клычников М.И.
  • Колобова Л.А.
RU2192690C2
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОУРОВНЕВОЙ РАЗВОДКИ ИНТЕГРАЛЬНЫХ СХЕМ 1991
  • Бычок Е.А.
  • Макарова Л.С.
  • Нижникова Н.В.
  • Становский В.В.
  • Терехов А.М.
SU1814434A1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНЫХ ТРАНЗИСТОРОВ МАТРИЦ ЖИДКОКРИСТАЛЛИЧЕСКИХ ЭКРАНОВ 1994
  • Казуров Б.И.
  • Сулимин А.Д.
  • Шишко В.А.
  • Приходько Е.Л.
RU2069417C1
СПОСОБ АНИЗОТРОПНОГО ПЛАЗМЕННОГО ТРАВЛЕНИЯ КРЕМНИЕВЫХ МИКРОСТРУКТУР В ЦИКЛИЧЕСКОМ ДВУХШАГОВОМ ПРОЦЕССЕ ОКИСЛЕНИЕ-ТРАВЛЕНИЕ 2018
  • Аверкин Сергей Николаевич
  • Антипов Александр Павлович
  • Лукичев Владимир Федорович
  • Мяконьких Андрей Валерьевич
  • Руденко Константин Васильевич
  • Рылов Алексей Анатольевич
  • Семин Юрий Федорович
RU2691758C1
СПОСОБ ФОРМИРОВАНИЯ МНОГОУРОВНЕВЫХ МЕДНЫХ МЕЖСОЕДИНЕНИЙ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ С ИСПОЛЬЗОВАНИЕМ ВОЛЬФРАМОВОЙ ЖЕСТКОЙ МАСКИ 2013
  • Данила Андрей Владимирович
  • Гущин Олег Павлович
  • Красников Геннадий Яковлевич
  • Бакланов Михаил Родионович
  • Гвоздев Владимир Александрович
  • Бурякова Татьяна Леонтьевна
  • Игнатов Павел Викторович
  • Аверкин Сергей Николаевич
  • Янович Сергей Игоревич
  • Тюрин Игорь Алексеевич
RU2523064C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДВУХУРОВНЕВОЙ МЕТАЛЛИЗАЦИИ 1991
  • Медведев Н.М.
  • Хворов Л.И.
RU2025825C1

Иллюстрации к изобретению RU 2 024 991 C1

Реферат патента 1994 года СПОСОБ ПЛАЗМЕННОГО ТРАВЛЕНИЯ КОНТАКТНЫХ ОКОН В ИЗОЛИРУЮЩИХ И ПАССИВИРУЮЩИХ СЛОЯХ ДИЭЛЕКТРИКОВ НА ОСНОВЕ КРЕМНИЯ

Использование: микроэлектроника, производство БИС и СБИС. Сущность изобретения: способ плазменного травления контактных окон в изолирующих и пассивирующих слоях диэлектриков на основе кремния, включает обработку слоя диэлектрика в индивидуальном диодном реакторе при давлении от 300 до 1200 Па и плотности ВЧ-мощности от 4,0 до 8,0 Вт/см2 в плазме четырехкомпонентной смеси при следующем соотношении компонентов от: октафторпропан или гексафторэтан 12 37, гексафторид серы или трифторид азота 1 4, кислород 1 4, гелий 55 - 86, что позволяет повысить скорость травления и уменьшить осаждение фторуглеродных полимеров. 1 табл., 2 ил.

Формула изобретения RU 2 024 991 C1

СПОСОБ ПЛАЗМЕННОГО ТРАВЛЕНИЯ КОНТАКТНЫХ ОКОН В ИЗОЛИРУЮЩИХ И ПАССИВИРУЮЩИХ СЛОЯХ ДИЭЛЕКТРИКОВ НА ОСНОВЕ КРЕМНИЯ, включающий обработку слоя диэлектрика через фоторезистивную маску, сформированную на его поверхности, в индивидуальном диодном реакторе в плазме смеси, содержащей фторуглерод, кислород, гелий, отличающийся тем, что обработку проводят при давлении 300 - 1200 Па и плотности ВЧ-мощности 4,0 - 8,0 Вт/см2 в плазме смеси, дополнительно содержащей гексафторид серы или трифторид азота, а в качестве фторуглерода - октафторпропан или гексафторэтан при следующем количественном соотношении компонентов, об.%:
Октафторпропан или гексафторэтан 12 - 37
Гексафторид серы или трифторид азота 1 - 4
Кислород 1 - 4
Гелий 55 - 86

Документы, цитированные в отчете о поиске Патент 1994 года RU2024991C1

P.C
Karulkar and M.A
Wirzbicki "Characterization of etching silicon dioxide and photoresist in a fluorocarbon plasma", Y.Vac.Sci.Technol.B, v.6, n5, p.1595-1589, 1988.

RU 2 024 991 C1

Авторы

Близнецов В.Н.

Гущин О.П.

Красников Г.Я.

Трусов А.А.

Храпова В.В.

Ячменев В.В.

Даты

1994-12-15Публикация

1992-06-11Подача