СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ p-n-ПЕРЕХОДОВ НА АНТИМОНИДЕ ИНДИЯ Российский патент 1995 года по МПК H01L21/66 

Описание патента на изобретение RU2026589C1

Изобретение относится к полупроводниковым приборам и может быть использовано в технологии одно- и многоэлементных (линейчатых и матричных) пpиборов на основе узкозонных полупроводников с высокими электрофизическими параметрами.

Известен способ изготовления планарных p-n-переходов на антимониде индия, включающий ионную имплантацию легирующей примеси в подложку через маску, которой является пленка фоторезиста, нанесение капсулирующей пиролитической пленки двуокиси кремния и постимплантационный отжиг.

Недостатком способа является пониженные величины электрофизических параметров из-за наличия остаточных дефектов структуры в имплантированном слое после отжига [1].

За прототип принят способ изготовления планарных p-n-переходов на антимониде индия, включающий подготовку поверхности исходной пластины антимонида индия (концентрация электронов 2˙1015 см-3), нанесение пленки SiO2 в качестве маскирующего покрытия окислением моносилана при 370-400оС, вскрытие окон в маскирующем покрытии, проведение термодиффузии при 400-450оС на глубину 3-5 мкм, удаление маскирующего покрытия, стравливание приповерхностного слоя пластины и затем последующее многократное утоньшение диффузионного слоя до тех пор, пока не будет достигнута заданная высокая величина квантовой эффективности η , операции по защите поверхности, нанесение и формирование рисунка металлической разводки, межоперационные отмывки [2].

Недостатком способа является высокая трудоемкость, низкие выход годных и пробивное напряжение изготовленных диодов.

Высокая трудоемкость обусловлена необходимостью стравливания слоя толщиной в 1 мкм и затем многократного дотравливания диффузионного слоя с контролем по величине квантовой эффективности η .

Низкий выход годных p-n-переходов обусловлен недостаточно высокими маскирующими свойствами пленки SiO2, которая в процессе диффузионного отжига "пропускает" поток примесных атомов, способных при низкой концентрации легирующей антимонид индия примеси (менее 2˙1015 см-3) формировать в подложке достаточно глубокий инверсионный слой. Поэтому на пластинах с концентрацией менее 2˙1015 см-3 изготовить высокого качества p-n-переход не удается, так как мешает шунтирующий глубокий инверсионный слой, находящийся под пленкой SiO2, который не удается стравить, не затронув самого p-n-перехода, и который оказывает тем большее отрицательное воздействие на электрические характеристики, в частности, на пробивное напряжение, чем ниже была концентрация примеси в исходном материале. Таким образом, качественные p-n-переходы на материале с исходной концентрацией примеси менее 2 ˙1015 см-3 рассматриваемым способом изготовить не удается, что и приводит к низкому выходу годных, так как слиток исходного материала имеет большой разброс по концентрации, а большинство используемых марок материала включает в себя концентрации менее 2˙1015 см-3.

Следствием указанного выше являются также и низкие пробивные напряжения, величина которых обратно пропорциональна концентрации легирующей примеси в исходном материале. Так, например, при концентрации 2˙1015 см-3 пробивное напряжение составляет 0,2-0,3 В и, как следует из изложенного, при рассматриваемом способе изготовления p-n-переходов больше быть не может.

Целью изобретения является снижение трудоемкости, повышение процента выхода годных и увеличение пробивного напряжение p-n-переходов.

Цель достигается тем, что в известном способе изготовления планарных p-n-переходов на антимониде индия, включающем подготовку поверхности исходной пластины, нанесение маскирующей пленки, вскрытие окон в маскирующей пленке для локального введения примесных атомов, введение примесных атомов диффузией, удаление маскирующей пленки, стравливание поверхностного слоя пластины, защиту и просветление поверхности, нанесение металлических пленок и формирование рисунка контактной системы, а также межоперационные отмывки, нанесение маскирующей пленки осуществляют синтезом кремния из газовой фазы.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного использованием определенного вещества при нанесении маскирующей пленки.

Таким образом, заявляемый способ соответствует критерию изобретения "Новизна".

Использование в качестве защитной маски при диффузии примеси в антимониде индия пленки кремния, полученной синтезом из газовой фазы, позволяет снизить трудоемкость изготовления, повысить процент выхода годных и увеличить пробивное напряжение p-n-переходов.

Экспериментально установлено следующее:
пленка кремния, выращенная из газовой фазы, и антимонид индия обладают хорошо соответствующими друг другу коэффициентами термического расширения;
под пленкой кремния не формируется инверсионный слой, а структурные нарушения поверхностного слоя антимонида индия при диффузии не превышают 20-30 нм;
высокая однородность, сплошность и плотность кремниевой пленки, полученной синтезом из газовой фазы, а также низкие коэффициенты термической диффузии основных диффузантов, применяемых в технологии изготовления p-n-переходов на антимониде индия, а именно кадмия, теллура, серы, цинка позволяют осуществить прямую диффузию на глубину 0,4-0,6 мкм.

Все это обеспечивает достижение вышеуказанной цели.

Если пленка кремния выращена не из газовой фазы, а например, термическим испарением или магнетронным распылением, то для обеспечения ее адгезии, сплошности и отсутствия внутренних напряжений требуются высокие температуры, что недопустимо для антимонида индия.

Не обнаружены технические решения, относящиеся к способам изготовления планарных p-n-переходов на антимониде индия, в которых пленки кремния, получаемые синтезом из газовой фазы, используются в качестве защитных масок при диффузии примеси.

Из известных литературных источников не выявлены закономерности, позволившие бы установить возможность получения мелких планарных диффузионных p-n-переходов на антимониде индия непосредственно диффузией на глубину 0,4-0,6 мкм.

Таким образом, на основании вышеизложенного, по мнению авторов, можно сделать вывод о соответствии предложенного технического решения критерию изобретения "Существенные отличия".

П р и м е р. Пластины антимонида индия с концентрацией легирующей примеси от 1014 до 2˙1015 см-3 и ориентацией (100) подвергали стандартным оптико-механической и химико-динамической полировкам и отмывкам.

На 10 шт. отмытых пластин (p-n-переходы I группы) наносили пленку кремния, которую синтезировали в плазме ВЧ разряда (13,5 МГц) в смеси газов: 5% моносилана и 95% аргона. Режим осаждения был стандартным и состоял в следующем: интервал температуры подложки был в пределах от 60 до 150оС; интервал плотности тока плазмы - (5-10) мкА ˙см-2; интервал давлений газа - от 26,6 до 39,9 Па, толщина пленки в интервале от 100 до 300 нм.

Пределы толщины маскирующей пленки кремния (100-300 нм) ограничены снизу необходимой маскирующей ее способностью и сверху нецелесообразным увеличением длительности процесса синтеза пленки. Диапазон температуры нанесения пленки (Тпод = 60-150оС) выбран исходя из необходимости обеспечения требуемой адгезии пленки (нижний предел) и началом формирования инверсионного слоя под пленкой кремния (верхний предел). Пределы глубины диффузии (Хj = 0,4-0,6 мкм) определяются достижением величины η = 0,7 и более (верхний предел Хj = 0,6 мкм) и обеспечением сопротивления диффузионного слоя, на два порядка величины меньшего дифференциального сопротивления p-n-перехода при его площади S = 1 мм2 (нижний предел Хj = 0,4 мкм). Диапазон толщин стравленного с поверхности пластины слоя (20-30 нм) определяется минимальной толщиной формирования сплошной и равномерной по толщине анодной пленки (нижний предел) и нецелесообразностью стравливания больших толщин легированного слоя, требующих увеличения времени анодного окисления (верхний предел).

На другие 10 шт. пластин пленку кремния наносили магнетронным распылением (p-n-переходы II группы).

На пластинах с пленкой кремния фотолитографией выделяли участки, подлежащие легированию кадмием, которые вскрывали до подложки травлением пленки в плазме смеси газов фреона-14 с кислородом (30%).

Диффузию кадмия проводили на глубину (0,4-0,6) мкм в потоке водорода при температуре пластины 400оС в течение 8 ч. После диффузии маскирующую пленку кремния стравливали в плазме (фреон-14 с кислородом) и затем пластины отмывали от следов кадмия в химических растворах. После этого с поверхности пластины удаляли слой толщиной (20-30) нм наращиванием до 100 нм толщиной и травлением анодно окисленной пленки. Далее на пластине выращивали новый слой анодного окисла (50 нм), который служил защитой для p-n-перехода. На сформированную таким образом структуру наносили пленку подконтактного диэлектрика (моноокись кремния или нитрид кремния), в которой с помощью фотолитографии, плазмохимического и химического травлений вскрывали контактные окна к чувствительным элементам, после чего формировали контактную систему напылением пленок хром-золота и фотолитографией. Таким путем были изготовлены кристаллы одноэлементных - и 64-х элементных p-n-переходов.

Для получения сравнительных данных, кроме указанных выше двух типов p-n-переходов, изготавливали на 10 шт. пластин структуры в соответствии с технологией прототипа p-n-переходы III группы, где в качестве маскирующего покрытия использовали пленку пиролитической двуокиси кремния (Тпод = 200оС), а остальные операции были аналогичными с предыдущими двумя группами p-n-переходов.

Затем каждую пластину разрезали на шесть 64-х элементных линеек (т.е. в каждой группе p-n-переходов получено по 60 линеек), которые сначала отбраковывали по величине динамического сопротивления Rд, а затем по напряжению пробоя Uпр. Отобранные годные линейки разваривали, капсулировали, после чего проводили измерения вольт-амперных характеристик для выявления пробитых при сборке p-n-переходов и повторно на всех элементах измеряли Rд и Uпр. Измерения проводили на стандартной установке К 896, 141, разработанной в НПО "Орион".

Кроме того, предлагаемым способом (I группа) и способом-прототипом (II группа) были изготовлены 10 матриц p-n-переходов с числом элементов в каждой 32х32. Определяли количество неработоспособных элементов по отсутствию связи между элементами и пробою p-n-переходов на подложку. Результаты измерений представлены в таблице.

Как видно из данных таблицы, предлагаемый способ позволяет повысить выход годных (в 10 и более раз) и пробивное напряжение, кроме того, он менее трудоемок за счет исключения операций травления и многостадийной подгонки толщины стравленного слоя до достижения заданного значения квантовой эффективности p-n-переходов.

Похожие патенты RU2026589C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ p- n -ПЕРЕХОДОВ НА КРИСТАЛЛАХ INAS n-ТИПА ПРОВОДИМОСТИ 1993
  • Астахов В.П.
  • Данилов Ю.А.
  • Давыдов В.Н.
  • Лесников В.П.
  • Дудкин В.Ф.
  • Сидорова Г.Ю.
  • Таубкин И.И.
  • Трохин А.С.
RU2045107C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОСХЕМ 1982
  • Усманова М.М.
  • Данцев О.Н.
  • Брюхно Н.А.
  • Комаров Ю.А.
  • Юлдашев Г.Ф.
SU1085439A1
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНЫХ КРЕМНИЕВЫХ СТРУКТУР 1991
  • Ногин В.М.
  • Мякиненков В.И.
  • Сопов О.В.
  • Саратовский Н.К.
  • Сейдман Л.А.
SU1814430A1
ПЛАНАРНЫЙ ФОТОДИОД НА АНТИМОНИДЕ ИНДИЯ 2011
  • Астахов Владимир Петрович
  • Астахова Галина Сергеевна
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Михайлова Елена Вячеславовна
RU2461914C1
КОМПЛЕМЕНТАРНАЯ БИПОЛЯРНАЯ ТРАНЗИСТОРНАЯ СТРУКТУРА ИНТЕГРАЛЬНОЙ СХЕМЫ 1997
  • Сауров А.Н.
RU2111578C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДИОДОВ НА АНТИМОНИДЕ ИНДИЯ 2006
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Ежов Виктор Петрович
  • Карпов Владимир Владимирович
  • Крапухин Вячеслав Всеволодович
  • Мануйлова Лидия Константиновна
RU2313853C1
Способ изготовления многоплощадочного кремниевого pin-фоточувствительного элемента 2017
  • Будтолаев Андрей Константинович
  • Либерова Галина Владимировна
  • Рыбаков Андрей Викторович
  • Хакуашев Павел Евгеньевич
RU2654998C1
СПОСОБ ИЗГОТОВЛЕНИЯ P-N-ПЕРЕХОДОВ НА КРИСТАЛЛАХ АНТИМОНИДА ИНДИЯ N-ТИПА ПРОВОДИМОСТИ 1993
  • Астахов В.П.
  • Барбой В.Е.
  • Карпов В.В.
  • Мозжорин Ю.Д.
  • Ермакова И.М.
  • Овчинников А.С.
  • Пасеков В.Ф.
  • Бузуев Ю.И.
  • Постников И.В.
  • Коршунов А.Б.
RU2056671C1
СПОСОБ ДИФФУЗИИ ФОСФОРА ИЗ ТВЕРДОГО ИСТОЧНИКА ПРИ ИЗГОТОВЛЕНИИ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 1991
  • Денисюк В.А.
  • Бреслер Г.И.
SU1829758A1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ С ПРИСТЕНОЧНЫМИ p-n-ПЕРЕХОДАМИ 1983
  • Манжа Н.М.
  • Кокин В.Н.
  • Казуров Б.И.
  • Чистяков Ю.Д.
  • Патюков С.И.
  • Шурчков И.О.
SU1178269A1

Иллюстрации к изобретению RU 2 026 589 C1

Реферат патента 1995 года СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ p-n-ПЕРЕХОДОВ НА АНТИМОНИДЕ ИНДИЯ

Использование: микроэлектроника, технология изготовления одно- и многоэлементных приборов на основе узкозонных полупроводников с высокими электрофизическими параметрами. Сущность изобретения: при изготовлении планарных p-n-переходов на антимониде индия проводят подготовку поверхности исходной пластины антимонида индия, наносят маскирующую пленку кремния синтезом из газовой фазы, вскрывают в ней окна для локального введения примесных атомов, проводят диффузию, удаляют маскирующую пленку и стравливают поверхностный слой пластины. 1 табл.

Формула изобретения RU 2 026 589 C1

СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ P-N-ПЕРЕХОДОВ НА АНТИМОНИДЕ ИНДИЯ, включающий подготовку поверхности исходной пластины, нанесение маскирующей пленки, вскрытие окон в маскирующей пленке для локального введения примесных атомов, введение примесных атомов диффузией, удаление маскирующей пленки, стравливание поверхностного слоя пластины, защиту и просветление поверхности, нанесение металлических пленок и формирование рисунка контактной системы, а также межоперационные отмывки, отличающийся тем, что нанесение маскирующей пленки осуществляют синтезом кремния из газовой фазы.

Документы, цитированные в отчете о поиске Патент 1995 года RU2026589C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент США N 4286277, 357-30, 1981.

RU 2 026 589 C1

Авторы

Астахов В.П.

Бойков Ю.И.

Дудкин В.Ф.

Мозжорин Ю.Д.

Ниязова А.Р.

Рябова А.А.

Сидорова Г.Ю.

Даты

1995-01-09Публикация

1991-07-08Подача