СПОСОБ ОЧИСТКИ АКТИВНОЙ СРЕДЫ ЖИДКОСТНОГО ЛАЗЕРА Российский патент 1995 года по МПК H01S3/213 

Описание патента на изобретение RU2029424C1

Изобретение относится к квантовой электронике, в частности к перестариваемым лазерам на красителях.

В настоящее время жидкостные перестраиваемые лазеры на основе растворов органических соединений уже находят применение в различных областях науки и техники. Однако их применение было бы еще более широким, если бы их ресурс работы (при сохранении высокой эффективности преобразования) был более высоким. Наиболее активные фотостабильные среды сине-зеленого диапазона спектра, например, обеспечивают ресурс работы при падении КПД преобразования в 2 раза 300 Дж/см3 (энергия, вкачанная в 1 см3 раствора). Многокомпонентные смеси на основе этанольных растворов кумарина 102 позволяют повысить ресурс до 1 кДж/см3. Однако с появлением высокоэнергетических (энергия в импульсе > 1 Дж) частотных (частота повторения до 1 кГц) лазеров накачки, в частности на хлориде ксенона, такого ресурса активной среды явно недостаточно для создания мощных лазерных систем. Необходимо повысить его не менее чем на порядок (до 10-50 кДж/см3).

Известно использование как механических фильтров в системе прокачки жидкостных лазеров, предназначенных для очистки раствора красителей от макрочастиц, появляющихся в процессе работы вследствие износа металлических деталей насоса и т.д., так и специальных фильтров, способных очищать активную среду от образовавшихся фотопродуктов [1].

Наиболее близким по технической сущности и достигаемому техническому результату является использование для очистки среды жидкостного лазера оксида алюминия [2]. Недостатком указанного сорбента является его малая эффективность очистки активной среды от продуктов фотолиза, накопление которых снижает ресурс работы жидкостного лазера. Кроме того, в процессе работы лазера вследствие фотораспада происходит падение концентрации активного вещества, это сопровождается уменьшением коэффициента усиления, а следовательно, КПД генерации. Использование оксида алюминия не позволяет стабилизировать концентрацию активного вещества в процессе работы лазера.

Целью изобретения является увеличение ресурса работы активной среды вследствие ее регенерации и очистки.

Цель достигается тем, что активная среда после облучения пропускается через сорбент, предварительно насыщенный раствором исходной активной среды до установления равновесия, а в качестве сорбента используется или оксид циркония, содержащий оксид титана, или твердые растворы оксида циркония с одним из оксидов металлов, выбранных из группы: алюминий, иттрий, редкоземельные элементы, кальций, магний.

Вследствие этого образовавшиеся при обучении активной среды фотопродукты поглощаются сорбентом и концентрация активных молекул восстанавливается, так как сорбент был предварительно насыщен до установления равновесия и он его поддерживает. Это приводит к увеличению ресурса работы лазера.

Сущность изобретения поясняется следующими примерами.

П р и м е р ы 1-3. Спиртовый раствор красителя кумарин 102 с концентрацией С = (1,6-8)х10-3 моль/л был облучен эксимерным лазером на хлориде ксенона со средней мощностью накачки Wн = 10 МВт/см2.

Измерялись КПД генерации и оптическая плотность раствора на длине волны генерации ( λ = 477 нм).

Через колонку с сорбентом, предварительно промытым спиртом, пропускался исходный раствор кумарина 102 до выравнивания концентраций кумарина на входе и выходе из колонки (стадия насыщения сорбента). Диаметр колонки 10 мм, объем загрузки сорбента 2 см3. Затем через колонку с насыщенным красителем со скоростью 60 мл/мин 10 раз пропускался облученный раствор красителя. Характеристики исходного, облученного и регенерированного растворов приведены в табл.1.

Из данных табл.1 следует, что при облучении рабочего раствора вследствие появления фотопродуктов фотолиза происходит увеличение поглощения на длине волны генерации ( λ = 477 нм) и снижение вследствие этого КПД генерации в среднем в два раза. Последующее пропускание облученного раствора через колонку с сорбентом приводит к снижению концентрации продуктов фотолиза (уменьшение Д477) и повышению КПД генерации практически до исходного значения.

Проведено испытание сорбентов в системе прокачки.

П р и м е р ы 8-12. В систему прокачки жидкостного лазера объемом V = 20 см3 (этанольный раствор кумарина 102, С = 10-3 моль/л) включалась колонка с сорбентом Z2O2, содержащим различные количества красителя. Для сравнения проводили аналогичный эксперимент без колонки с сорбентом. Полученные данные приведены в табл.2.

Параметры облучения и условия прокачки описаны в предыдущем примере.

Показано, что в активной среде без сорбента (пример 4) за два часа эксперимента произошло падение КПД генерации с 12 до 8,1%. Ресурс лазера (время уменьшения КПД в два раза) составил 3 ч. Кроме того, зафиксировано увеличение поглощения на λ = 477 нм до 0,036 и уменьшение оптической плотности в максимуме полосы поглощения кумарина 102 ( λ = 390 нм) с 1,24 до 1,0,
Если в колонку загружен сорбент, не насыщенный красителем, ресурс работы лазера уменьшается за счет поглощения сорбентом самого красителя, хотя и имеет место сорбция фотопродуктов (пример 5). При использовании сорбента, насыщенного красителем, ресурс работы лазера возрастает линейно с ростом концентрации красителя (примеры 6-8). Верхний предел по концентрации красителя определяется емкость сорбента и зависимостью начального КПД генерации от концентрации. При концентрации 1,5 мг/г начальной КПД генерации уменьшился по сравнению с оптимальным на 20%, хотя в то же время ресурс лазера возрос (пример 8).

При содержании красителя в сорбенте 0,1-1 мг/г происходит более медленное падение концентрации активного компонента, уменьшение концентрации фотопродуктов и возрастание ресурса активной среды. Так, при концентрации красителя 1 мг/г (пример 7) за 6 ч. 30 мин. эксперимента КПД генерации упал с 12 до 10,6% , оптическая плотность при λ = 390 нм уменьшилась до 1,12, Д477 увеличилась до 0,023.

Ресурс среды возрос в 10 раз и составил 31 ч.

Таким образом, предлагаемый способ очистки существенно позволяет увеличить ресурс активной среды и может быть использован во всех промышленных жидкостных лазерах.

Похожие патенты RU2029424C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ АКТИВНОЙ СРЕДЫ ЖИДКОСТНЫХ ЛАЗЕРОВ 1991
  • Копылова Татьяна Николаевна[Ru]
  • Самсонова Любовь Гавриловна[Ru]
  • Чайковская Ольга Николаевна[Ru]
  • Майер Георгий Владимирович[Ru]
  • Лобода Лариса Ивановна[Ru]
  • Омецинский Бронислав Францевич[Ua]
  • Лукьянчук Вячеслав Михайлович[Ua]
RU2044379C1
СПОСОБ ОБНАРУЖЕНИЯ И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ЭКДИСТЕРОИДОВ В РАСТИТЕЛЬНЫХ ОБЪЕКТАХ 1994
  • Зибарева Л.Н.
  • Еремина В.И.
  • Зибарев П.В.
RU2082168C1
ЛАЗЕРНОЕ ВЕЩЕСТВО 2003
  • Мокроусов Г.М.
  • Еремина Н.С.
  • Вайтулевич Е.А.
  • Копылова Т.Н.
  • Светличный В.А.
  • Самсонова Л.Г.
RU2245597C1
СПОСОБ УПРОЧНЕНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ 1992
  • Итин В.И.
  • Лыков С.В.
  • Нестеренко В.П.
  • Озур Г.Е.
  • Проскуровский Д.И.
  • Ротштейн В.П.
RU2048606C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКЛОННОСТИ ЦИРКОНИЕВЫХ СПЛАВОВ К НОДУЛЬНОЙ КОРРОЗИИ 1990
  • Перехожев В.И.
  • Сурнин А.Г.
RU2036465C1
СПОСОБ РЕГЕНЕРАЦИИ УГЛЕРОДНОГО СОРБЕНТА, ЗАГРЯЗНЕННОГО ОРГАНИЧЕСКИМИ ВЕЩЕСТВАМИ 1992
  • Лазарева Л.П.
  • Лисицкая И.Г.
  • Горчакова Н.К.
  • Хабалов В.В.
RU2046014C1
ГАЗОАНАЛИЗАТОР 1992
  • Булдаков М.А.
  • Ипполитов И.И.
  • Королев Б.В.
  • Лобецкий В.Е.
  • Матросов И.И.
RU2029288C1
ЛАЗЕРНОЕ ВЕЩЕСТВО 2004
  • Копылова Татьяна Николаевна
  • Самсонова Любовь Гавриловна
  • Светличный Валерий Анатольевич
  • Вайтулевич Елена Анатольевна
RU2279167C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 1994
  • Дударев Е.Ф.
  • Почивалова Г.П.
  • Никитина Н.В.
RU2082146C1
Голографический способ измерения амплитуды колебаний объекта 1987
  • Гусев Владимир Георгиевич
SU1705706A1

Иллюстрации к изобретению RU 2 029 424 C1

Реферат патента 1995 года СПОСОБ ОЧИСТКИ АКТИВНОЙ СРЕДЫ ЖИДКОСТНОГО ЛАЗЕРА

Использование: в квантовой электронике, в частности в перестраиваемых лазерах на красителях. Сущность изобретения: активная среда жидкостного лазера на основе кумариновых красителей после облучения прокачивается через слой гранулированного сорбента, предварительно насыщенного исходной активной средой до установления равновесия. В качестве сорбента используют или оксид циркония, содержащий оксид титана, или твердые растворы оксида циркония с одним из оксидов металлов, выбранных из группы: иттрий, редкоземельные элементы, кальций, магний. 2 табл.

Формула изобретения RU 2 029 424 C1

СПОСОБ ОЧИСТКИ АКТИВНОЙ СРЕДЫ ЖИДКОСТНОГО ЛАЗЕРА на основе кумариновых красителей путем прокачки через слой гранулированного сорбента, отличающийся тем, что сорбент предварительно насыщают исходной активной средой до установления равновесия, при этом в качестве сорбента используют или оксид циркония, содержащий оксид титана, или твердые растворы оксида циркония с одним из оксидов металлов, выбранных из группы: алюминий, иттрий, редкоземельные элементы, кальций, магний.

Документы, цитированные в отчете о поиске Патент 1995 года RU2029424C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Мостовников Б.А
и др
Восстановление генерационных свойств растворов красителей после их фотохимической реакции
Экономайзер 0
  • Каблиц Р.К.
SU94A1

RU 2 029 424 C1

Авторы

Вовк С.М.

Галкин В.М.

Дегтяренко К.М.

Копылова Т.Н.

Соколова И.В.

Тельминов Е.Н.

Перехожева Т.Н.

Полуяхтов А.И.

Шарыгин Л.М.

Даты

1995-02-20Публикация

1991-12-18Подача