СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ Российский патент 1995 года по МПК G01N21/41 

Описание патента на изобретение RU2029942C1

Изобретение относится к измерительной технике и может быть использовано для определения показателя преломления жидких и газообразных сред, в частности, в системах автоматизированного контроля и управления производством.

В настоящее время одной из важных задач является автоматизированный контроль показателя преломления в процессе производства ряда продуктов потребления, например продуктов нефтепереработки, сахарного производства и др. Известные в настоящее время способы и средства измерения показателя преломления жидких и газообразных веществ не позволяют точно и надежно осуществить указанные измерения для непрозрачных (мутных, загрязненных) сред.

Известен способ измерения показателя преломления, включающий разделение монохроматического поляризованного света на два пучка, их пропускание через эталонное и исследуемое вещества, помещенные соответственно в эталонную и рабочую кюветы, сведение обоих пучков света и определение показателя преломления по положению экстремумов характерной картины взаимодействующих пучков [1].

Недостатками этого способа являются сложность технической реализации, связанная с обеспечением точности конструктивных параметров эталонной и исследуемой кювет, значения которых входят в математическую формулу для определения показателя преломления исследуемого вещества, а также низкое быстродействие, обусловленное, в частности, проведением операции смещения верхней полуплоскости в эталонной кювете и измерением этого смещения.

Известен также способ измерения показателя преломления, включающий регистрацию положения границы светотени, образующейся при полном внутреннем отражении на освещаемой монохроматическим пучком лучей границе раздела эталонной и исследуемой сред, поляризацию и модуляцию отраженного от границы раздела пучка лучей, изменение азимута линейно поляризованного излучения части пучка отраженных лучей, а изменение показателя преломления определяют по изменению азимута плоскости поляризации [2].

Недостатками этого способа являются недостаточные надежность и быстродействие, обусловленные наличием подвижных механических узлов и временем, необходимым для изменения азимута, плоскости поляризации и анализа измененного состояния.

Наиболее близким к изобретению по технической сущности является способ измерения показателя преломления жидкости [3], по которому исследуемую жидкость помещают в цилиндрическую кювету с известными внутренним а и внешним b диаметрами и показателем преломления ncматериала стенок кюветы, освещают кювету рассеянным световым пучком, который ограничивают симметрично плоскости, проходящей через ось кюветы и линию регистрации, и измеряют расстояния между границами света и тени в распределении интенсивности. Из прошедшего кювету излучения формируют пучок параллельных лучей, а показатель преломления исследуемой среды вычисляют по формуле.

К недостаткам прототипа следует отнести то, что в описанном способе светотехнические характеристики среды (мутность, загрязненность) существенно влияют на точность измерения показателя преломления. Так, при высоких показателях непрозрачности граница света - тени, которую измеряют при реализации способа, размывается, что существенно сказывается на точность определения показателя преломления.

Изобретение решает задачу повышения точности измерения показателя преломления жидких и газообразных сред, включая непрозрачные среды.

Задача решена тем, что по способу измерения показателя преломления среды nср. , по которому исследуемую среду помещают в прозрачный цилиндрический сосуд с внутренним а и внешним b диаметрами и показателем преломления материала стенок сосуда nc, освещают последний световым пучком, который ограничивают на входе в сосуд, и регистрируют границу светотени, сосуд освещают пучком лучей, параллельных плоскости отсчета, проходящей через ось сосуда, пучок ограничивают на расстоянии, меньшем a/2 и большем nc. a/2 относительно плоскости отсчета, регистрируют граничное положение лучей, подвергшихся полному внутреннему отражению на поверхности раздела внутренней стенки сосуда и исследуемой среды, а показатель преломления среды при условии nср < nc определяют по расстоянию границы светотени от плоскости отсчета.

Дополнительным условием является выбор соотношения между внутренним a и внешним b диаметрами кюветы из условия b > nc˙ a.

На фиг. 1 приведена структурная схема устройства для реализации способа; на фиг. 2 - зависимость углов выхода лучей, прошедших через кювету (сосуд) с исследуемой средой, от координат входа их в кювету параллельно плоскости отсчета для различных значений показателя преломления исследуемых сред.

Устройство, реализующее способ, содержит оптически связанные источник 1 излучения, коллиматор 2, ограничители 3 и 4, два края которых расположены соответственно на расстоянии a/2 и nc.a/2 от плоскости отсчета, цилиндрическую кювету 5, ось которой параллельна краям ограничителей 3 и 4 и лежит в плоскости отсчета, фотоприемник 6 и блок 7 регистрации, вход которого подключен к выходу фотоприемника 6.

Способ осуществляется следующим образом.

Исследуемую среду помещают в цилиндрическую кювету 5. Световым потоком от источника 1 излучения, прошедщим коллиматор 2 и щель между ограничителями 3 и 4, облучают цилиндрическую кювету 5. Фотоприемником 6 фиксируют граничное положение лучей, прошедших через стенки кюветы 5 и испытавших явление полного внутреннего отражения на границе исследуемой среды и внутренней стенки цилиндрической кюветы 5, и преобразуют оптическое изображение в электрический сигнал. Блок 7 регистрации по положению границы света и тени в соответствии с градуировочной таблицей вычисляет значение показателя преломления исследуемой среды.

На фиг. 2 приведены графики зависимости углов выхода лучей, прошедших через кювету 5 с исследуемой средой, от координат входа их в кювету 5 параллельно плоскости отсчета для различных значений показателя преломления. Отсчет координат входа каждого луча и значения угла выхода соответствующего луча производят от плоскости отсчета, проходящей через источник 1 излучения, ось кюветы 5 и фотоприемник 6. При этом отсчет против часовой стрелки принимают со знаком "+" и по часовой - со знаком "-".

Углы выхода лучей, прошедших через прозрачную цилиндрическую кювету 5 с исследуемой средой, связаны с координатами входа в кювету 5 лучей, параллельных плоскости отсчета, зависимостями, вытекающими из формул
θ1=2arcsin - arcsin + arcsin - arcsin; (1)
θ2=2arcsin - arcsin + arcsin - 1; (2)
θ3= 2arcsin - arcsin, (3) где θ1 - угол выхода лучей, прошедших через две стенки кюветы 5 и исследуемую среду ( кривые 8, 9 10 и 11,12, 13 на фиг. 2);
θ2 - угол выхода лучей, прошедших через стенки кюветы 5 и испытавших явление полного внутреннего отражения на границе стенок кюветы 5 и исследуемой среды (кривые 14 и 15 на фиг. 2);
θ3 - угол выхода лучей, прошедших через стенки кюветы 5, не касаясь исследуемой среды (кривые 16 и 17 на фиг. 2);
r и R - внутренний и внешний радиусы кюветы 5;
х - координаты входа лучей относительно плоскости отсчета.

На фиг. 2 приведены графики, построенные по уравнениям (1) - (3) для различных значений показателя преломления исследуемых сред: ncр1 = 1,33 (кривая 8), nср2 = 1,38 (кривая 9), nср3 = 1,43 (кривая 10), при nc= =1,56, кривые 18 и 19 отражают прохождение лучей через цилиндрическую прозрачную кювету, наполненную воздухом с показателем преломления ncро = 1.

Графики на фиг. 2 свидетельствуют о том, что существуют предельные углы выхода лучей θПO - θПЗ для каждого определенного показателя преломления среды nсро - nср3.

Таким образом, если в плоскости изображения установить фотоприемник 6 и фиксировать предельное положение лучей θПO - θПЗ, то по положению границы светотени можно вычислить показатель преломления исследуемой среды.

Согласно уравнениям (1) - (3) и графику на фиг. 2 предлагаемый способ реализуется при условии выполнения соотношения nср < nс. Способ имеет преимущественную реализацию при соблюдении условия b > nc.a Выполнение названных условий не является препятствием для реализации способа на практике, поскольку толстостенные стеклянные трубки с требуемым соотношением b>nca выпускаются промышленностью, а значение показателя преломления большинства жидких и газообразных сред меньше значения показателя преломления стенок стеклянных кювет (сосудов).

Преимуществом предлагаемого способа по сравнению с прототипом является возможность измерения параметров мутных, непрозрачных сред без изменения градуировочных характеристик устройства, реализующего способ.

Похожие патенты RU2029942C1

название год авторы номер документа
Способ измерения показателя преломления жидкости 1988
  • Гришко Виктор Федорович
  • Паламарчук Олег Николаевич
SU1636737A1
РЕФРАКТОМЕТР ДИФФЕРЕНЦИАЛЬНЫЙ ПОРТАТИВНЫЙ 2011
  • Пеньковский Анатолий Иванович
RU2488096C2
Способ и устройство для измеренияпОКАзАТЕля пРЕлОМлЕНия 1979
  • Воронкин Владимир Иванович
  • Горелов Леонид Викторович
  • Кеймах Раиса Яковлевна
  • Полегаев Михаил Васильевич
SU807163A1
Устройство для измерения геометрических размеров прозрачных труб 1988
  • Гришко Виктор Федорович
  • Хомук Сергей Дмитриевич
  • Скаржепа Владимир Антонович
  • Горский Валерий Александрович
SU1657961A1
РЕФРАКТОМЕТР 2005
  • Пеньковский Анатолий Иванович
RU2296981C1
Способ измерения показателя преломления прозрачных стержней 1986
  • Гришко Виктор Федорович
  • Хомук Сергей Дмитриевич
  • Паламарчук Олег Николаевич
SU1441278A1
Способ исследования оптической плотности текущей жидкости 2020
  • Гребенникова Надежда Михайловна
  • Давыдов Вадим Владимирович
RU2756373C1
СПОСОБ ИЗМЕРЕНИЯ КРЕПОСТИ ВОДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Пеньковский А.И.
  • Гусихин А.В.
  • Федоров Э.И.
  • Волков Р.И.
  • Филатов М.И.
  • Сафина Р.А.
  • Николаева Л.А.
  • Хамелин Д.Д.
  • Верещагин В.И.
RU2241220C2
ФОТОЭЛЕКТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ И СРЕДНЕЙ ДИСПЕРСИИ МОТОРНЫХ ТОПЛИВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2022
  • Пеньковский Анатолий Иванович
  • Веселовская Маргарита Васильевна
RU2806195C1
СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ КОНДЕНСИРОВАННЫХ СРЕД 1992
  • Морозов В.Н.
  • Васильева И.С.
RU2045039C1

Иллюстрации к изобретению RU 2 029 942 C1

Реферат патента 1995 года СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ

Использование: в измерительной технике, для определения показателя преломления жидких и газообразных сред. Сущность изобретения: исследуемую среду помещают в прозрачный цилиндрический сосуд с внутренним a и внешним b диаметрами и показателем преломления материала стенок сосуда nc освещают последний световым пучком, который ограничивают, и регистрируют границу светотени. Пучок лучей, параллельных плоскости отсчета, проходящей через ось сосуда, ограничивают на входе последнего на расстоянии, меньшем a/2 и большем nc· a/2 относительно плоскости отсчета. Регистрируют граничное положение лучей, подвергшихся полному внутреннему отражению, на поверхности раздела внутренней стенки сосуда и исследуемой среды. При условии nср< nc показатель преломления среды определяют по расстоянию границы светотени от плоскости отсчета. 2 ил.

Формула изобретения RU 2 029 942 C1

СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ среды, в котором исследуемую среду помещают в прозрачный цилиндрический сосуд с внутренним a и внешним b диаметрами и показателем преломления материала стенок сосуда nс, освещают последний световым пучком, который ограничивают на входе в сосуд и регистрируют границу светотени, отличающийся тем, что сосуд освещают пучком лучей, параллельных плоскости отсчета, проходящей через ось сосуда, пучок ограничивают на расстоянии, меньшем a/2 и большем nс · a/2 относительно плоскости отсчета, регистрируют граничное положение лучей, подвергшихся полному внутреннему отражению на поверхности раздела внутренней стенки сосуда и исследуемой среды, а показатель преломления среды nср при соблюдении условия nср < nс определяют по расстоянию границы светотени от плоскости отсчета.

Документы, цитированные в отчете о поиске Патент 1995 года RU2029942C1

Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ измерения показателя преломления жидкости 1988
  • Гришко Виктор Федорович
  • Паламарчук Олег Николаевич
SU1636737A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 029 942 C1

Авторы

Гришко Виктор Федорович[Ua]

Попадюха Юрий Андреевич[Ua]

Хомук Сергей Дмитриевич[Ua]

Сердюк Анатолий Тимофеевич[Ua]

Даты

1995-02-27Публикация

1992-09-09Подача