Изобретение относится к электротехнике и может быть использовано для симметрирования трехфазных нагрузок и сетей, несимметрия которых обусловлена эксплуатацией однофазных и трехфазных несимметричных нагрузок.
Известны способы симметрирования несимметричных трехфазных сетей и нагрузок [1,2] . Эти способы сводятся в основном к симметрированию системы несимметричных токов и напряжений при помощи либо рационального распределения (равномерного) нагрузок по фазам, либо при помощи управляемых и неуправляемых емкостных и индуктивных симметрирующих устройств в зависимости от характера графика нагрузок.
Наиболее близким к предлагаемому способу по технической сущности является способ [3], в основу которого положено известное уравнение по определению обратной составляющей токов, напряжений и т.п.
Недостатки указанных способов заключаются в том, что они сложны требуют больших экономических затрат, обусловленных применением трехфазных симметрирующих устройств при симметрировании трехфазных сетей.
Цель изобретения - упрощение симметрирования несимметричных трехфазных нагрузок и сетей. Данный способ позволяет быстро и без особых затрат определить величину симметрирующего элемента для любой заранее выбранной фазы и, включив его лишь в эту фазу, исключить обратную ее составляющую в целом всей несимметричной трехфазной сети. Полученные величины симметрирующего элемента, в которых участвуют при их определении параметры всех трех фаз, предопределяют наиболее экономичную конструкцию симметрирующего элемента.
Цель достигается тем, что при этом способе симметрирования трехфазной нагрузки, заключающемся в измерении величин и аргументов фазных токов несимметричной нагрузки, напряжения трехфазной сети, вычислении величин проводимостей симметрирующих элементов и подключении симметрирующих элементов к трехфазной сети с вычисленными величинами проводимостей, которые вычисляют по следующей формуле:
g1 ± jb1= (+)+j(-)-/, (1) где g1, b1 - активная и реактивная составляющие проводимостей симметрирующего элемента, подключаемого к выбранной фазе 1 (А);
U - напряжение трехфазной сети;
, , - комплексы фазных токов несимметричной нагрузки, индекс 2 означает опережающую фазу, а индекс 3 - отстающую фазу по отношению к выбранной фазе 1, к которой подключается симметрирующий элемент.
Обобщенное уравнение (1) в комплексной форме в развернутом виде будет иметь вид:
(2) или аналогично (1)
(3)
Найденный симметрирующий элемент может быть либо активно-емкостным, либо активно-индуктивным; это зависит от величины и характера нагрузок в фазах. Обобщенные формулы всегда дают возможность определить альтернативные значения симметрирующих элементов по отношению к выбранной фазе. Абсолютные значения величин, найденных при помощи обобщенных формул (1) и (3), всегда будут равны
| I1 | = | I2 | = | I3 |,
|g1±b1|= |g2±b2|= |g3 ±b3|; комплексные их значения не равны
g1±jb1≠g2±jb2≠g3±jb3.
В процессе конструирования симметрирующего элемента величину элемента, вычисленную при помощи обобщенной формулы (1) и подлежащую включению в выбранную фазу для исключения обратной составляющей, следует проверить при помощи известной формулы составляющей обратной последовательности
I2= IA+a2IB+aI.
Изобретение иллюстрируется следующими примерами.
1. Замеренные токи в фазах и их отстающие фазовые углы
IA=I1=19∠40°A;
IB=I2=8∠62°A;
IC=I3=11∠17°A;
UA=UB=UC=220B.
2. Симметрирующую токовую нагрузку определяют по формуле (1)
I = I=(I2+I3)+j(I2-I3)-I1= (3,76-j7,04+10,56-j3,19)+
+j(3,76-j7,04-10,56+j3,19)-14,55+j12,21 = -4,06+j1,2 A,
I= 4,23∠16°A. Как видно из результата, полученная величина с отрицательным знаком перед действительной частью комплексного числа не имеет смысла.
Можно получить альтернативное значение симметрирующего элемента по обобщенной формуле (1) для другой выбранной фазы, например фазы В (2)
I = I=(I3+I1)+j(I3-I1)-I2= (10,56-j3,19+14,55-j12,21)+
+j(10,56-j3,19-14,55+j12,21)-3,76+j7,04=0,99-j4,2 A,
I = 4,23∠76°A.
Для фазы С (3)
I = I=(I1+I2)+j(I1-I2)-I3= (14,55-j12,21+3,76-j7,04)+
+j(14,55-j12,21-3,76+j7,04)-10,56+j3,19=3,07+j2,91 A,
=4,23∠43°A.
Таким образом, для симметрирования трехфазной сети (нагрузки) необходимо включить фазу В активно-индуктивный симметрирующий элемент, либо в фазу С - активно-емкостный
g2-jb2= = 0,0045-j0,0187 Cм;
g3+jb3= = 0,014+j0,013 Cм.
Включенные в фазу В активно-индуктивный симметрирующий элемент, либо в фазу С - активно-емкостный, должны привести к симметрированию несимметричную трехфазную сеть (нагрузку), т.е. геометрическая сумма фактической величины комплексного значения тока в фазе В (С) и величины симметрирующего элемента приведут составляющую обратной последовательности к нулю. Проверка производится по величине числителя, полученного обобщенной формулой (1).
По фазе В
I2= (IB+a2IC+aIA) = (I2+(I-jI)+a2I3+aI1) =
= (3,76-j12,21+(0,99-j4,12)+(- -j)(10,56-j3,19) +
+ (- +j)(14,55-j12,21) = 0.
По фазе С
I2= (IC+a2IA+aIB) = (I3+(I+jI)+a2I1+aI2) =
= (10,56-j3,19+(3,07+j2,91)+(- -j) (10,56-j3,19) +
+ (- +j)(14,55-j12,21) = 0. Как следует из примеров, полученные симметрирующие элементы: активно-индуктивный, включенный в фазу В, либо активно-емкостный, включенный в фазу С, в обоих случаях приводят трехфазную сеть (нагрузку) к нулю.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для симметрирования режимаТРЕХфАзНОй СЕТи | 1979 |
|
SU801186A1 |
Способ симметрирования токов трёхфазной сети 0,4 кВ | 2017 |
|
RU2678190C1 |
Устройство для симметрирования режима трехфазной сети | 1978 |
|
SU955361A1 |
Способ совместной частичной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги | 2017 |
|
RU2669770C1 |
Устройство для симметрирования выходного напряжения трехфазного источника переменного тока | 1977 |
|
SU729749A1 |
СПОСОБЫ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УДАЛЕННОСТИ ОДНОФАЗНОГО ЗАМЫКАНИЯ В ТРЕХФАЗНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ (ВАРИАНТЫ) | 2001 |
|
RU2186404C1 |
Электротехнический комплекс для симметрирования однофазной нагрузки | 2019 |
|
RU2727923C1 |
ТРАНСФОРМАТОРНОЕ УСТРОЙСТВО ДЛЯ СИММЕТРИРОВАНИЯ РЕЖИМА ТРЕХФАЗНОЙ СЕТИ | 1969 |
|
SU250287A1 |
Способ управления симметрирующим устройством | 1980 |
|
SU905941A1 |
Симметрирующее устройство для трехфазной четырехпроводной электрической сети | 1981 |
|
SU982146A1 |
Сущность изобретения: измеряют комплексы фазных токов несимметричной нагрузки и напряжение сети. Вычисляют проводимость симметрирующего элемента по приведенной формуле. Симметрирующий элемент имеет активно-реактивный характер. В зависимости от знака вычисленной реактивной составляющей симметрирующий элемент может быть как активно-емкостным, так и активно-индуктивным. Симметрирующий подключается на фазное напряжение трехфазной сети.
СПОСОБ СИММЕТРИРОВАНИЯ ТРЕХФАЗНОЙ НАГРУЗКИ, заключающийся в измерении величин и аргументов комплексов фазных токов несимметричной нагрузки, измерении напряжения трехфазной сети, вычислении величин проводимостей симметрирующих элементов и подключении симметрирующих элементов к трехфазной сети с вычисленными величинами проводимостей, отличающийся тем, что, с целью упрощения, вычисления величин проводимостей производят по следующему выражению:
где U - напряжение трехфазной сети;
- комплексы фазных токов несимметричной нагрузки;
индекс 2 - опережающая фаза;
индекс 3 - отстающая фаза по отношению к выбранной фазе 1, к которой подключается симметрирующий элемент с активной g1 и реактивной b1 составляющими проводимости, причем если реактивная проводимость b1 > 0, то элемент является емкостным, а если b1 < 0, - то индуктивным.
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Устройство для симметрирования трехфазных сетей | 1981 |
|
SU974499A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1995-02-27—Публикация
1990-02-09—Подача