Изобретение относится к технике оптической фотометрии, а именно к технике измерения абсолютной чувствительности фотоприемников в видимом и ИК-диапазонах спектра, а также в ближнем УФ-диапазоне спектра электромагнитного излучения.
Известны способы и устройства для измерения абсолютной чувствительности фотоприемников, в которых передача энергетических единиц измерения производится многоступенчатым образом: через ряд последовательно калибруемых эталонных, образцовых и рабочих источников или приемников излучения [1]. Недостатками этих способов являются низкая точность - от 10% до 50% в зависимости от спектрального диапазона измерений и количества ступеней, а также сложность практической реализации многоступенчатой поверочной схемы.
Наиболее близким к предлагаемому способу как по действию, так и по исполнению является метод комплексной аттестации матричного средства измерения пространственных характеристик импульсного лазерного излучения. Принцип действия метода и работа установки заключаются в следующем. Лазерное излучение проходит через рассеивающее устройство и попадает в оптическую систему, где рассеянное излучение разветвляется на два канала; оптическое излучение каждого канала имеет частоту лазерного источника и пространственное распределение, определяемое характером рассеивающего устройства. Оптическое излучение регистрируется с помощью двух фотоприемных устройств - вспомогательного и измеряемого, причем вспомогательное устройство обязательно должно быть предварительно прокалибровано по эталону. Сигналы с выхода фотоприемных устройств поступают на две схемы регистрации, а затем сводятся на схеме сравнения, включающей ЭВМ, где и производится вычисление пространственного распределения абсолютной чувствительности измеряемого фотоприемника [2] . Недостатками известных способа и устройства, являются низкая точность абсолютной калибровки пространственного распределения чувствительности фотоприемников, сложность предварительной аттестации абсолютной чувствительности вспомогательного фотоприемника, невозможность одновременного измерения спектрального распределения чувствительности.
Целью изобретения является повышение точности, упрощение измерений и обеспечение измерений спектрального распределения абсолютной чувствительности.
На фиг. 1 изображена схема, поясняющая действие предлагаемого метода; на фиг. 2 - схема устройства (п. 2 формулы изобретения); на фиг. 3 - схема устройства (п. 3 формулы изобретения).
Способ осуществляется с помощью устройства, которое содержит лазерный источник излучения 1, нелинейный кристалл 2, оптическую систему 3, устройства передачи 4 и 5, схемы сканирования 6, 7, 8, вспомогательный фотоприемник 9, измеряемый фотоприемник 10, блоки регистрации 11 и 12, схему задержки 13, схему совпадения 14, блок автоматизации и управления 15, дополнительно может содержать спектрально селектирующий прибор 16.
Способ и работа устройства заключаются в том, что излучение лазерной накачки частоты ω0 формируется в источнике 1 и направляется на нелинейный кристалл 2, в котором происходит спонтанное параметрическое рассеяние накачки с образованием пар коррелированных фотонов с сопряженными частотами ωи ω'= ω0 -ω , сопряженными волновыми векторами и =-- и (k0 - волновой вектор излучения накачки в кристалле, 2π/l - небольшая расстройка пространственного синхронизма, зависящая от толщины кристалла l: = 0). Поляризация излучения накачки выбирается с учетом анизотропии тензора квадратичной восприимчивости нелинейного кристалла. Кристалл ориентирован по отношению к накачке так, что рассеянное излучение распространяется под малыми углами к направлению накачки. После кристалла располагается оптическая система 3 для выделения и фокусировки рассеянного излучения. В ней производится подавление излучения накачки на частоте ω0 и фокусировка рассеянного света.
Пучки рассеянного излучения собираются в фокальной плоскости F за оптической системой. Все рассеянные фотоны каждой пары частот ωи ωI=ω0-ω фокусируются в двух точках плоскости F, смещенных в диаметрально противоположных направлениях относительно следа накачки О. Координаты сопряженных точек х и х' определяются условием пространственного синхронизма для волновых векторов при θ′≪1, θ≪1= 0. Для малых углов рассеяния θI<< 1, θ<< 1 справедливы соотношения:
x(ω)=f
x′(ω′)= f где f - фокусное расстояние оптической системы, n0, n, n' - показатели преломления кристалла 2 на частотах ω0, ω,ω' соответственно.
Расстройка синхронизма =0 определяет угловой разброс рассеянных волн и минимальный диаметр фокусировки в каждую точку:
Δxmin ≈ 2πc/ωnl
Δx'min ≈ 2 πc/ ω'n l (с - скорость света). От размеров Δхmin и Δх'min зависит пространственное разрешение предлагаемого способа измерения зонной характеристики чувствительности фотоприемника.
Устройство передачи 4 подает рассеянное излучение сопряженных частот ω'с точек х' (ω') плоскости F на входную апертуру вспомогательного фотоприемника 9. Устройство передачи 5 подает рассеянное излучение измеряемых частот ω с точек х(ω) плоскости F на участки входной апертуры измеряемого фотоприемника 10. При измерении спектрального распределения абсолютной чувствительности в блоке автоматизации и управления 15 для каждой частоты измерения ωопределяется значение сопряженной частоты ω' и координат х(ω), х' (ω') установки входных отверстий устройств 4, 5 в соответствии с соотношениями (1). Затем вырабатываются управляющие сигналы, по которым устройства сканирования 6 и 7 осуществляют смещение входных отверстий 4 и 5 в плоскости F. При определении пространственного распределения абсолютной чувствительности на фиксированной частоте ω устройство сканирования 8 (по сигналам с блока 15) осуществляет смещение выходного отверстия устройства передачи 5 в плоскости входной апертуры измеряемого фотоприемника 10.
Электрические сигналы, вырабатываемые измеряемым и вспомогательным фотоприемниками, поступают на блоки регистрации 11 и 12, где измеряется (в относительных единицах измерения) их величина. После этого сигналы поступают на схему совпадения 14, причем сигналы одного из трактов предварительно проходят через схему задержки 13. В процессе параметрического рассеяния излучения накачки в нелинейном кристалле каждый фотон частоты ωрождается практически одновременно с фотоном сопряженной частоты ω'. Схема задержки предназначена для выравнивания моментов прихода сигналов от двух фотонов каждой пары (т.е. сигнала с блока 11 и сигнала с блока 12) на схему совпадения 14. На схеме совпадения производится измерение взаимной корреляционной функции показаний блоков регистрации 11 и 12.
Сигналы со схемы совпадения 14 и блока регистрации вспомогательного источника 11 поступают на блок автоматизации и управления 15. Здесь производится вычисление чувствительности освещаемого участка входной апертуры измеряемого фотоприемника на заданной частоте. Спектральная чувствительность и квантовая эффективность определяются через отношение показаний схемы совпадения и блока регистрации вспомогательного фотоприемника 11.
Спектральный диапазон действия предлагаемого способа и устройства определяется областью оптической прозрачности кристалла и частотой накачки. Нижняя граница диапазона частот измерения абсолютной чувствительности может доходить до 2500-1000 см-1, т.е. 4-10 мкм, верхняя - до 40000 см-1, т.е. 250 нм. Для повышения спектральной размещающей способности устройства в его схему может быть введен спектрально селектирующий прибор 16. Он располагается между выходным отверстием устройства передачи 4 и вспомогательным фотоприемником. Спектральный диапазон пропускания прибора 16 на каждой сопряженной частоты ω' должен быть меньше, чем интервал частот Δ ω' излучения, поступающего через устройство передачи 4 из-за конечной входной апертуры этого устройства Δх' . Измерение пропускания прибора 16, также как и всех остальных элементов блок-схемы устройства, не требуется для проведения абсолютных измерений чувствительности измеряемого фотоприемника 10. Не требуется также предварительная калибровка чувствительности вспомогательного фотоприемника 9. Предлагаемые способ и устройство основаны на фундаментальных статических свойствах излучения, рождающегося при параметрическом рассеянии света. Возможность проведения абсолютных измерений без привлечения каких-либо эталонных (или прокалиброванных по эталонам через многоступенчатую поверочную схему) приемников или источников излучения позволяет существенно повысить точность абсолютной калибровки спектрального и пространственного распределения чувствительности фотоприемников.
название | год | авторы | номер документа |
---|---|---|---|
БЕЗЭТАЛОННЫЙ СПОСОБ ИЗМЕРЕНИЯ КВАНТОВОЙ ЭФФЕКТИВНОСТИ КАТОДА ФОТОЭЛЕКТРОННОГО УМНОЖИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2023 |
|
RU2819206C1 |
СПОСОБ ДЕТЕКТИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2448399C2 |
Эталон спектральной плотности энергетической яркости для калибровки источника излучения | 1986 |
|
SU1339412A1 |
АБСОЛЮТНЫЙ ИЗМЕРИТЕЛЬ КВАНТОВОЙ ЭФФЕКТИВНОСТИ ФОТОПРИЕМНИКОВ | 1990 |
|
SU1780399A1 |
АВИАЦИОННЫЙ ЛАЗЕРНЫЙ ГАЗОАНАЛИЗАТОР ДЛЯ ОБНАРУЖЕНИЯ УТЕЧЕК ИЗ ТРУБОПРОВОДОВ | 1995 |
|
RU2086959C1 |
СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ И СПОСОБ ВЫДЕЛЕНИЯ СИГНАЛА | 2011 |
|
RU2460102C1 |
СПЕКТРОМЕТР КОГЕРЕНТНОГО АНТИСТОКСОВА РАССЕЯНИЯ С КОНТРОЛЕМ СПЕКТРА ШИРОКОПОЛОСНОЙ НАКАЧКИ | 2010 |
|
RU2429454C1 |
АВИАЦИОННОЕ УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ УТЕЧЕК ГАЗА ИЗ ТРУБОПРОВОДОВ | 1995 |
|
RU2091759C1 |
СПОСОБ ЛАЗЕРНОЙ ЛОКАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2152056C1 |
СПОСОБ ЛАЗЕРНОЙ ЛОКАЦИИ И ЛАЗЕРНОЕ ЛОКАЦИОННОЕ УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2183841C1 |
Использование: техника оптической фотометрии, а именно техника измерения абсолютной чувствительности фотоприемников в видимом и ИК-диапазонах спектора электромагнитного излучения. Сущность изобретения: используют параметрическое расстояние лазерного излучения в нелинейном кристалле, после кристалла производят селекцию рассеянного излучения по направлению распространения составляющих волн с помощью оптической системы и устанавливают взаимно однозначное соответствие между координатами x, x1 фокальной плоскости оптической системы, с одной стороны, и частотами ω, ω1 с другой - по математической формуле, приведенной в описании. Устройство включает нелинейный кристалл, два устройства передачи рассеянного излучения на входные отверстия фотоприемников, оптически сопряженные через оптическую систему с нелинейным кристаллом, три схемы сканирования, механически сопряженные с двумя входными и одним выходным отверстием устройств передачи, схему задержки, схему совпадения, сопряженную с двумя блоками регистрации, блок автоматизации и управления, сопряженный со схемами сканирования, схемой задержки и блоком регистрации вспомогательного фотоприемника, при этом между входным отверстием устройства передачи и вспомогательным фотоприемником помещают спектрально-селектирующий прибор. 2 с.п. ф-лы, 3 ил.
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ АБСОЛЮТНОЙ ЧУВСТВИТЕЛЬНОСТИ ФОТОПРИЕМНИКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Улановский М.В | |||
Поверочная установка для средств измерений пространственно-энергетических характеристик импульсного лазерного излучения | |||
Сб | |||
Метрологическое обеспечение пространственно-энергетической фотометрии | |||
Кузнечная нефтяная печь с форсункой | 1917 |
|
SU1987A1 |
Авторы
Даты
1995-03-10—Публикация
1991-06-28—Подача