СПЕКТРОМЕТР КОГЕРЕНТНОГО АНТИСТОКСОВА РАССЕЯНИЯ С КОНТРОЛЕМ СПЕКТРА ШИРОКОПОЛОСНОЙ НАКАЧКИ Российский патент 2011 года по МПК G01J3/44 

Описание патента на изобретение RU2429454C1

Изобретение относится к экспериментальной физике, в частности, к технике проведения оптических измерений температуры и состава веществ с высоким временным и пространственным разрешением. Оно может быть использовано при исследовании турбулентных течений газов, пламени, а также при изучении структуры ударных волн, газовых потоков, движущихся со сверх- и гиперзвуковыми скоростями, быстропротекающих процессов, в том числе в двигателях внутреннего сгорания, в топках, газовых турбинах.

Информацию о параметрах среды, исследуемой методами спектроскопии когерентного антистоксова рассеяния света (КАРС), рассчитывают используя форму и амплитуду регистрируемых спектров. Для получения спектра применяют излучение лазеров с различными частотами, например ω0 и ω1, которое смешивается в измерительном объеме. Как правило, частота ω0 фиксирована, a ω1 - смещена в длинноволновую (стоксову) область на величину комбинационного сдвига исследуемого вещества. В результате взаимодействия световых пучков с исследуемой средой в коротковолновой (антистоксовой) области возникает излучение КАРС на частоте ωа=2×ω01. Если излучение второго лазера имеет необходимую ширину спектра Δω1, то излучение КАРС возникает также в широкой полосе частот, которое регистрируют за время одной вспышки лазеров (~10 нс).

Известен метод «Crossed-beam phase-matched coherent anti-stokes raman spectroscopy» [Патент США №4277760, 1981 г., G01J 3/44; H01S 3/30; H01S 003/30], при котором пучки лазеров со специально подобранными частотами одновременно направляются на вещество, образуя область пересечения, в которой возникает излучение КАРС.

Недостатком описанного метода является наличие пульсаций интенсивности КАРС, которые в случае моноимпульсной широкополосной регистрации приводят к флуктуациям формы регистрируемых спектров, а следовательно, к появлению случайной ошибки измеряемых параметров, в частности температуры.

Известен метод и устройство «Method of and apparatus for quantitative analysis in accordance with CARS» [Патент США №4573792, 1986 г., G01J 3/44; G01N 21/65; G01J 3/44; G01N 21/63], в котором используют широкополосное излучение стоксова лазера. Причем при обработке данных используют нормировку на линии, расположенные вблизи измеряемых, возникающие в контрольном объеме, заполненном специально подобранным газом.

Недостатком описанного устройства является невозможность учесть искажения формы широкополосного лазерного излучения от импульса к импульсу, поскольку сигналы КАРС в измерительном и контрольном объемах возбуждаются от различных частотных компонент в профиле широкополосного излучения стоксова лазера.

Наиболее близким по технической сущности заявляемому устройству является спектрометр когерентного антистоксова рассеяния для одновременных измерений мгновенных температур и концентраций вещества [Патент РФ №2055328, 1996 г., G01J 3/44], который содержит лазер для формирования опорного излучения, перестраиваемый лазер, пучки которых пересекаются в контрольном и измерительном объемах, фотоприемники, причем контрольный и измерительный объемы расположены на общей оптической оси, а система пространственного разделения пучков когерентного антистоксова рассеяния выполнена в виде клина, установленного между контрольным и измерительным объемами, при этом в задней фокальной плоскости монохроматора размещают либо световоды, присоединенные к фотоприемникам, либо усилитель яркости и многоканальный фотоприемник.

Недостатком этого устройства является использование контрольного объема, расположенного в пределах оптической системы, в котором возбуждают КАРС, а затем с помощью оптического клина его отделяют от КАРС, полученного в измерительном объеме, и передают оба сигнала на многоканальный фотоприемник.

Задачей заявляемого изобретения является повышение точности измерений путем учета флуктуации формы спектра широкополосного излучения накачки, которого достигают исключением контрольного объема из оптической схемы при одновременном учете спектральных характеристик используемого лазерного излучения.

Поставленную задачу решают тем, что в спектрометре когерентного антистоксова рассеяния с контролем спектра широкополосной накачки, содержащем лазер для формирования опорного излучения и широкополосный лазер, пучки которых пересекаются в измерительном объеме, в котором возбуждается когерентное антистоксово рассеяние света, спектр которого регистрируют с помощью монохроматора с многоканальным фотоприемником, согласно изобретению вводят второй монохроматор с многоканальным фотоприемником для одновременного измерения спектра излучения широкополосного лазера.

На фиг.1 представлена принципиальная схема устройства. Спектрометр содержит лазер 1 опорной частоты ω0, широкополосный лазер 2, создающий излучение с центральной частотой ω1 и шириной спектра Δω, расщепители пучков 3 и 3', поворотные зеркала 4, линзы 5, объект исследований 6, поглотители 7, спектральные приборы 8 и 8', многоканальные приемники 9 и 9'.

На фиг.2 приведены примеры мгновенных спектров излучения широкополосного лазера. Они дают представление о том, как изменяется форма спектра широкополосной накачки от импульса к импульсу.

На фиг.3 показаны результаты измерений мгновенных температур в водородовоздушном пламени. Там приведены распределения измеренных мгновенных температур, статистические характеристики.

Устройство работает следующим образом.

Излучение лазера 1 фиксированной частоты ω0 раздваивается с помощью расщепителя 3 и фокусируется вместе с излучением частоты ω1 широкополосного лазера 2 в объекте 6 исследований. В области пересечения лазерных пучков возбуждается когерентное антистоксово рассеяние-излучение частоты ωа, имеющее ограниченную апертуру и отделенное от лазерных пучков. Лазерное излучение перекрывается поглотителями 7, а пучок КАРС фокусируется на входную щель спектрального прибора 8. В выходной фокальной плоскости спектрального прибора формируется спектр КАРС, который регистрируется многоканальным фотоприемником 9. Часть излучения широкополосного лазера с помощью расщепителя 3' отводится на входную щель другого спектрального прибора 8'. В выходной фокальной плоскости спектрального прибора 8' формируется спектр излучения широкополосного лазера 2, который регистрируется многоканальным фотоприемником 9'. Таким образом, оба лазера синхронно работают с определенной частотой повторения импульсов, оба фотоприемника 9 и 9' работают согласованно с лазерами накачки и регистрируют предназначенные им спектры от каждой вспышки лазеров, спектральная информация сохраняется в памяти компьютеров. Последующая обработка импульсных спектров КАРС позволяет по форме этих спектров, полученных от каждой вспышки лазеров, рассчитать мгновенные значения температуры газа. Обработка содержит в себе процедуру сравнения экспериментального спектра с набором расчетных и выбор одного из них по принципу наилучшего совпадения формы. При создании такого набора расчетных спектров для одной вспышки лазеров используют соответствующий спектр широкополосного лазера.

Строгие формулы для расчета частотного распределения интенсивности сигнала антистоксова рассеяния Iаа) требуют отдельного детального описания. Но в основном это функция параметров лазерного излучения с основной I00) и стоксовой I11, Δω1)) частотами и нелинейной кубичной восприимчивости вещества χ(3):

Iаа)=f(I00), I11, Δω1),| χ(3)|2).

Использование заявляемого изобретения позволяет, учитывая спектральную форму излучения накачки, уменьшить случайную ошибку измерения мгновенной температуры. Предлагаемая оптическая схема максимально упрощена, она не требует дополнительного пространства для повторного сведения лазерных пучков, поскольку опорный объем не предусмотрен.

При испытаниях спектрометра когерентного антистоксова рассеяния с контролем спектра широкополосной накачки использован импульсный Nd:YAG лазер с преобразованием излучения во вторую гармонику с частотой ω0=18788 см-1 (длина волны 532 нм). Длительность импульсов излучения ~10 нс, частота повторения ~3 Гц, энергия в импульсе ~300 мДж. В качестве широкополосного лазера использован лазер на красителе феналемин 512. Энергия в импульсе на выходе лазера на красителе ~10 мДж. Центральная частота ω1=16474 см-1 (607 нм) излучения лазера на красителе и ширина спектра Δω1~80 см-1 подбирались таким образом, чтобы при смешении с излучением Nd:YAG лазера возбуждались ветви 0-0 и 1-1 колебательно-вращательного спектра азота.

Оптическая схема спектрометра соответствует фиг.1. Расщепление излучения частоты ω0 осуществляли с помощью полупрозрачного зеркала. Все пучки распространялись в одной плоскости. Расстояние на фокусирующих линзах между параллельными пучками ω0 и ω0~500 мм, между соседними ω0 и ω1~30 мм, фокусное расстояние линз 1500 мм. Диаметр перетяжки пучков в измерительном объеме ~100 мкм, продольный размер области пересечения ~1 мм. Для анализа рассеянного излучения использовали двойной монохроматор ДФС-24 с линейной дисперсией 0,4 нм/мм, для регистрации спектра вместо выходной щели был установлен многоканальный оптический регистратор спектров МОРС с усилителем яркости. Для анализа спектра широкополосного лазера использовали двойной монохроматор ДФС-12 с линейной дисперсией 0,5 нм/мм, для регистрации его спектра - многоканальный анализатор спектральной информации МАСИ.

В опытах измеряли мгновенные значения температуры T, K в поперечном сечении факела при истечении водорода из щелевого сопла с размерами 1×20 мм, ориентированного в плоскости пучков.

Форма спектра излучения широкополосного лазера изменялась от импульса к импульсу. На фиг.2 показаны три произвольно выбранных спектра. Всю эту спектральную информацию регистрировали и сохраняли для дальнейшей обработки.

На фиг.3а, б показаны результаты, полученные на расстоянии 60 мм от среза сопла вблизи оси факела. На фиг.3а приведены функции плотности вероятности и величина стандартного отклонения единичного измерения (Sdev) для температуры, рассчитанной с использованием импульсных спектров второй линейки. На фиг.3б эти же параметры рассчитаны без учета флуктуации в спектре широкополосной накачки, с использованием одного для всех вспышек профиля Гаусса, приближенного к форме среднего спектра.

Видно, что в пробных измерениях учет формы излучения накачки позволил уменьшить стандартное отклонение температуры с 239 K до 201 K.

Похожие патенты RU2429454C1

название год авторы номер документа
ОДНОПУЧКОВАЯ МИКРОСПЕКТРОСКОПИЯ КОГЕРЕНТНОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА НА ОСНОВЕ ВОЛОКОННО-ОПТИЧЕСКОГО СИНТЕЗАТОРА УПРАВЛЯЕМЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2007
  • Желтиков Алексей Михайлович
RU2360270C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВОДОРОДА В МЕТАЛЛАХ 1992
  • Михеев Г.М.
  • Малеев Д.И.
  • Махнев Е.С.
  • Могилева Т.Н.
RU2027165C1
ИСТОЧНИК БИГАРМОНИЧЕСКОЙ НАКАЧКИ К УСТРОЙСТВУ ДЛЯ ОПРЕДЕЛЕНИЯ ВОДОРОДА 2008
  • Калюжный Дмитрий Геннадьевич
  • Михеев Геннадий Михайлович
RU2374630C1
УНИВЕРСАЛЬНЫЙ ЛАЗЕРНЫЙ СПЕКТРОМЕТР 1991
  • Вовк С.М.
  • Серегин С.Л.
  • Федоров В.Ф.
SU1780407A1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВОДОРОДА В МЕТАЛЛАХ 1998
  • Михеев Г.М.
  • Калюжный Д.Г.
RU2148815C1
СПОСОБ ИССЛЕДОВАНИЯ НЕЛИНЕЙНОГО СПИНОВОГО РЕЗОНАНСА В ПОЛУПРОВОДНИКАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Корнилович Александр Антонович
  • Литвинов Владимир Георгиевич
  • Ермачихин Александр Валерьевич
  • Кусакин Дмитрий Сергеевич
RU2538073C2
УСТРОЙСТВО ОПРОСА ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА 2019
  • Цыденжапов Игорь Баирович
  • Сычев Игорь Викторович
  • Гранёв Игорь Владимирович
RU2701182C1
ИЗМЕРИТЕЛЬНАЯ КАМЕРА К УСТРОЙСТВУ ДЛЯ ОПРЕДЕЛЕНИЯ ВОДОРОДА В МЕТАЛЛАХ 2002
  • Калюжный Д.Г.
  • Михеев Г.М.
  • Бесогонов В.В.
RU2224239C1
РЕФЛЕКТОМЕТР ДЛЯ ИЗМЕРЕНИЯ РАСПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ И ТЕМПЕРАТУРЫ В ВОЛОКОННЫХ СВЕТОВОДАХ 2001
  • Наний О.Е.
RU2229693C2
НЕПРЕРЫВНЫЙ ЛАЗЕР НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ 2005
  • Грабчиков Александр Степанович
  • Лисинецкий Виктор Александрович
  • Орлович Валентин Антонович
RU2292103C1

Иллюстрации к изобретению RU 2 429 454 C1

Реферат патента 2011 года СПЕКТРОМЕТР КОГЕРЕНТНОГО АНТИСТОКСОВА РАССЕЯНИЯ С КОНТРОЛЕМ СПЕКТРА ШИРОКОПОЛОСНОЙ НАКАЧКИ

Спектрометр содержит лазер для формирования опорного излучения, широкополосный лазер и оптическую систему для фокусировки и пересечения световых пучков в измерительном объеме. Излучение из измерительного объема регистрируется монохроматором с многоканальным фотоприемником. Спектрометр содержит дополнительный монохроматор с фотоприемником для одновременной регистрации излучения широкополосного лазера. Технический результат заключается в повышении точности измерений путем учета флуктуации формы спектра широкополосного излучения. 3 ил.

Формула изобретения RU 2 429 454 C1

Спектрометр когерентного антистоксова рассеяния с контролем спектра широкополосной накачки, содержащий лазер для формирования опорного излучения, широкополосный лазер, оптическую систему для фокусировки и пересечения световых пучков в измерительном объеме, излучение из которого регистрируется монохроматором с многоканальным фотоприемником, отличающийся тем, что содержит дополнительный монохроматор с фотоприемником для одновременной регистрации излучения широкополосного лазера.

Документы, цитированные в отчете о поиске Патент 2011 года RU2429454C1

RU 2055328 C1, 27.02.1996
Пресс-форма для литья по выжигаемым или выплавляемым моделям 1978
  • Кольцов Иван Иванович
  • Маштаков Александр Васильевич
  • Скоркин Виталий Николаевич
  • Иванов Михаил Васильевич
SU764844A1
US 4277760 A, 07.07.1981
US 5786893 A, 28.07.1998.

RU 2 429 454 C1

Авторы

Фёдоров Сергей Юрьевич

Бояршинов Борис Фёдорович

Даты

2011-09-20Публикация

2010-05-05Подача