ОПТОЭЛЕКТРОННЫЙ ИЗМЕРИТЕЛЬ ПОСТОЯННЫХ МАГНИТНЫХ ПОЛЕЙ И ТОКОВ Российский патент 1995 года по МПК G01R33/32 G01N21/41 

Описание патента на изобретение RU2035048C1

Изобретение относится к измерительной технике и может быть использовано для измерения магнитных полей постоянных и электромагнитов, а также для бесконтактного измерения постоянных токов в системах питания электроустановок.

Известно устройство для измерения постоянных магнитных полей и токов, основанное на использовании эффекта Холла в полупроводниках [1]
Однако значительная температурная зависимость в устройствах прямого измерения без обратной связи и значительные шумы приводят к большим погрешностям измерений. Применение компенсационных методов в таких устройствах, когда чувствительный элемент управляет цепью отрицательной обратной связи, ведет к существенному снижению температурной нестабильности, но не устраняет влияние шумов.

Кроме того, шина, по которой протекает измеряемый ток, часто пропускается внутрь замкнутого магнитопровода, в котором создается компенсирующее магнитное поле, а это требует разрыва токоведущей цепи для монтажа датчика, что не позволяет сделать измерители тока переносными [2]
При этом значительно увеличиваются габариты и масса таких устройств.

Наиболее близким является устройство, основанное на эффекте Фарадея и использующее влияние измеряемой величины на угол поворота плоскости поляризации света, прошедшего магнитооптическую пленку, расположенную вблизи источника магнитного поля, в том числе токоведущей шины. Устройство содержит в оптической части светодиод и расположенные по ходу его луча входной поляризатор, стопу магнитооптических пленок, двулучепреломляющий анализатор с пространственным разведением лучей взаимно ортогональных поляризаций и два фотодиода, расположенных по ходу разведенных лучей. Каждая магнитооптическая пленка в стопе характеризуется одноосной перпендикулярной анизотропией, т.е. ее ось легкого намагничивания лежит перпендикулярно плоскости пленки. Стопа пленок, являющаяся чувствительным элементом, помещена в электромагнитную катушку, создающую перпендикулярное плоскости пленок магнитное поле и служащую для компенсации внешнего магнитного поля, индуцируемого шиной с измеряемым током. Электронная часть устройства содержит элементы для реализации заданного алгоритма обработки выходных сигналов фотодиодов, в том числе вычислительное устройство, содержащее дифференциальный усилитель, компаратор и усилитель тока, соединенный выходом с компенсационной катушкой. Вычислительное устройство определяет разность сигналов фотодиодов, нормированную на их сумму. Компаратор, сравнивая нормированную разность фотосигналов с нулем, выдает управляющий сигнал на усилитель тока, который изменяет величину тока в компенсирующей катушке, а, следовательно, и ее магнитное поле, до такого значения, при котором происходит полная компенсация магнитного поля шины с током. По величине ока через компенсационную катушку судят о величине тока в шине [3]
Недостатками описанного выше устройства являются невысокая точность измерения токов и полей и, как следствие, ограниченный снизу диапазон измеряемых величин. Указанные недостатки являются следствием того, что в устройстве применены магнитооптические пленки с одноосной перпендикулярной анизотропией, которые характеризуются достаточно высоким полем насыщения и, следовательно, небольшой крутизной передаточной характеристики "угол вращения плоскости поляризации измеряемое поле". С другой стороны, в описанном устройстве отсутствуют элементы, снижающие влияние коэрцитивности, присущей ферромагнитным материалам, на разброс результатов измерения, что особенно важно в области малых сигналов.

Целью изобретения является увеличение точности и расширение диапазона измеряемых постоянных полей и токов.

Указанная цель достигается тем, что в известное устройство, включающее светодиод и расположенные по ходу его луча входной поляризатор, магнитооптическую пленку, анализатор с разведением лучей взаимно ортогональных поляризаций, два фотодиода, расположенные по ходу разведенных лучей, а также электромагнитную катушку, дифференциальный усилитель, компаратор и усилитель тока, соединенный выходом с катушкой, дополнительно введены прямая оптическая призма с основанием в виде равнобедренного прямоугольного треугольника, дополнительная электромагнитная катушка, фильтр нижних частот и генератор, при этом магнитооптическая пленка выбрана с плоскостной анизотропией и расположена на оптическом контакте на гипотенузной грани призмы, оптические оси светодиода и анализатора перпендикулярны второй и третьей боковым граням призмы, соответственно, фотодиоды соединены с входами дифференциального усилителя, выход которого через фильтр нижних частот соединен с первым входом компаратора, второй вход которого заземлен, а выход соединен с усилителем тока, генератор соединен с дополнительной катушкой, причем обе катушки выполнены на одном полом каркасе, имеющем форму прямоугольного параллелепипеда, призма расположена внутри каркаса гипотенузной гранью в непосредственной близости к внутренней поверхности одной из его граней и параллельно ей, оси катушек ориентированы вдоль линии пересечения плоскости пленки и плоскости распространения света, при этом усилитель тока выполнен с выходным индикатором.

На чертеже представлена принципиальная схема предлагаемого измерителя.

Измеритель содержит светодиод 1, свет от которого через поляризатор 2 попадает в оптическую призму 3, на гипотенузной грани которой на оптическом контакте расположена магнитооптическая пленка 4. Отразившись от внешней поверхности пленки 4, свет после выхода из призмы 3 попадает в двулучепреломляющий анализатор 5, в котором происходит разделение лучей взаимно ортогональных поляризаций. Разделенные световые потоки детектируются фотодиодами 6 и 7, выходы которых соединены с входами дифференциального усилителя 8, сигнал с которого через фильтр 9 нижних частот попадает на вход компаратора 10 для сравнения с нулем. Выход компаратора через усилитель 11 тока с индикатором соединен с электромагнитной компенсационной катушкой 12, намотанной на прямоугольном каркасе. На этом же каркасе намотана дополнительная катушка 13, соединенная с генератором 14, служащим для высокочастотного подмагничивания. Чувствительным элементом устройства является магнитооптическая пленка 4 с плоскостной анизотропией, расположенная так, что измеряемое магнитное поле или поле измеряемого тока, текущего в шине 15, ориентировано по линии пересечения плоскости падения света и плоскости пленки.

Измеритель работает следующим образом.

Под воздействием измеряемого магнитного поля или магнитного поля измеряемого постоянного тока происходит изменение намагниченности чувствительного элемента магнитооптической пленки 4 с плоскостной анизотропией. Плоскополя- ризованное поляризатором 2 излучение светодиода 1, проходя дважды магнитооптическую пленку 4 и полностью отражаясь на ее внешней границе, взаимодействует с пленкой, что приводит к фарадеевскому повороту плоскости поляризации света. При этом для более эффективного ввода-вывода наклонно падающего излучения в магнитоптическую пленку применена оптическая призма 3. Плоскость падения света перпендикулярна плоскости пленки, а измеряемое магнитное поле или поле измеряемого тока должно быть ориентировано вдоль линии пересечения этих плоскостей. В качестве чувствительного элемента выбрана магнитооптическая пленка с плоскостной анизотропией, что приводит к существенному увеличению тангенса угла наклона передаточной характеристики "угол вращения плоскости поляризации измеряемое поле" по сравнению с пленками с одноосной перпендикулярной анизотропией, так как последние характеризуются значительно большими полями насыщения при практически одинаковых фарадеевских константах взаимодействия. Это позволяет значительно уменьшить порог срабатывания по магнитному полю и, следовательно, расширить диапазон и увеличить точность измерений.

Кроме этого, измеритель снабжен генератором 14 для высокочастотного подмагничивания, соединенным с электромагнитной катушкой 13, что эффективно снижая коэрцитивность чувствительного элемента на постоянном токе, также способствует достижению цели изобретения.

Из призмы 3 световое излучение попадает в двулучепреломляющий анализатор 5 с пространственным разведением лучей взаимно ортогональных поляризаций. Поляризатор 2 и анализатор 5 должны быть ориентированы своими главными осями под 45о друг относительно друга. Применение дифференциальной фотоприемной схемы, состоящей из фотодиодов 6 и 7 и дифференциального усилителя 8 их сигналов, обеспечивает полное подавление фотосигналов от фоновых световых потоков (не зависящих от внешних магнитных полей) и удвоение сигнала перемагничивания, измеряемого каждым каналом, при этом изменение направления намагничивания магнитооптической пленки приводит к смене знака постоянной составляющей выходного сигнала дифференциального усилителя. Содержащаяся в нем высокая частота генератора 14 подмагничивания полностью отфильтровывается фильтром 9 нижних частот. Постоянная составляющая выходного сигнала дифференциального усилителя подается на вход компаратора 10, где сравнивается с нулем. Выход компаратора через усилитель 11 тока соединен с компенсационной катушкой 12 таким образом, что ее магнитное поле полностью компенсирует измеряемое постоянное магнитное поле или поле тока, протекающего в шине 15, т. е. реализуется принцип общей отрицательной обратной связи, а магнитооптическая пленка по сути является "нуль-детектором" в схеме измерителя. Току в компенсационной катушке, измеряемому по встроенному в усилитель 11 индикатору, может быть расчетным методом или методом калибровки поставлено в соответствие измеряемое магнитное поле или измеряемый ток, текущий в шине 15.

Оптоэлектронный измеритель постоянных магнитных полей и токов может найти широкое применение в силовых подстанциях электротранспорта, в цепях управления и автоматического регулирования различного электропривода, в гальванике, робототехнике и т.п.

Похожие патенты RU2035048C1

название год авторы номер документа
МАГНИТООПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ ПОСТОЯННЫХ МАГНИТНЫХ ПОЛЕЙ И ТОКОВ 1993
  • Варнавский Владимир Алексеевич
  • Лебедев Сергей Викторович
  • Толокнов Николай Александрович
RU2035049C1
УСТРОЙСТВО ПРОВЕРКИ ПОДЛИННОСТИ ЦЕННЫХ БУМАГ, ИМЕЮЩИХ МАГНИТНЫЙ ОТПЕЧАТОК 1996
  • Варнавский Владимир Алексеевич
  • Толокнов Николай Александрович
RU2096766C1
Волоконно-оптический датчик магнитного поля и электрического тока 2020
  • Карлов Кирилл Рудольфович
  • Ракитин Сергей Александрович
  • Иванов Анатолий Николаевич
  • Вильнер Валерий Григорьевич
  • Голубев Николай Викторович
  • Даугель-Дауге Александр Георгиевич
  • Землянов Михаил Михайлович
  • Мамин Алексей Владимирович
RU2748305C1
ИЗМЕРИТЕЛЬ ТОКА ОПТИЧЕСКИЙ УНИВЕРСАЛЬНЫЙ 2019
  • Пеньковский Анатолий Иванович
  • Кириллова Светлана Анатольевна
  • Броун Федор Моисеевич
  • Верещагин Валерий Игоревич
  • Игнатьев Антон Андреевич
  • Хакимуллин Артур Альбертович
RU2700288C1
Магнитооптический пространственно - временной модулятор света 1990
  • Вилесов Юрий Федотович
  • Вишневский Виктор Георгиевич
  • Грошенко Николай Александрович
  • Левый Сергей Васильевич
SU1734068A1
ВОЛОКОННО-ОПТИЧЕСКОЕ УСТРОЙСТВО МАГНИТНОГО ПОЛЯ И ЭЛЕКТРИЧЕСКОГО ТОКА 2010
  • Исаков Сергей Алексеевич
  • Колганов Виталий Николаевич
  • Конаков Николай Дмитриевич
  • Кирьянов Виталий Львович
  • Кулагин Валерий Вячеславович
  • Федорова Наталья Дмитриевна
RU2428704C1
ОПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ ПЕРЕМЕННОГО ТОКА 2016
  • Муллин Фанис Фагимович
  • Закиров Айдар Наилевич
  • Смирнов Александр Борисович
  • Игнатьев Антон Андреевич
  • Верещагин Валерий Игоревич
  • Пеньковский Анатолий Иванович
  • Петрановский Николай Александрович
  • Лейченко Юрий Аркадьевич
  • Карпов Алексей Иванович
RU2620927C1
Оптический индикатор точки росы 1989
  • Прищепов Анатолий Сергеевич
  • Астанов Салих
  • Гришина Нонна Резоевна
  • Ниязханова Башорад Эшмаматовна
SU1798668A1
Магнитометр 1988
  • Бурым Юлиан Андреевич
  • Иванов Виктор Алексеевич
  • Слипец Евгений Васильевич
  • Шапошников Александр Николаевич
SU1580298A1
ИЗМЕРИТЕЛЬ ТОКА ОПТИЧЕСКИЙ УНИВЕРСАЛЬНЫЙ 2018
  • Пеньковский Анатолий Иванович
  • Кириллова Светлана Анатольевна
  • Верещагин Валерий Игоревич
  • Игнатьев Антон Андреевич
  • Хакимуллин Артур Альбертович
RU2682133C1

Реферат патента 1995 года ОПТОЭЛЕКТРОННЫЙ ИЗМЕРИТЕЛЬ ПОСТОЯННЫХ МАГНИТНЫХ ПОЛЕЙ И ТОКОВ

Использование: изобретение относится к измерительной технике и может быть использовано для измерения магнитных полей постоянных и электромагнитов, а также для бесконтактного измерения постоянных токов в системах питания электроустановок. Сущность изобретения: работа измерителя основана на использовании эффекта Фарадея в магнитооптической пленке 4 с плоскостной анизотропией, намагниченность которой зависит от внешних магнитных полей. Пленка 4 расположена на оптическом контакте на гипотенузной грани призмы 3. Поляризованный свет от светодиода 1 модулируется в пленке в соответствии с ее намагниченностью. Лучи с ортогональными поляризациями разделяются анализатором 5 и детектируются фотодиодами 6 и 7, соединенными с дифференциальным усилителем 8. После фильтрации фильтром 9 нижних частот сигнала подается на компаратор 10, где происходит его сравнение с нулем. Выходной сигнал компаратора 10 является управляющим для усилителя 11 тока, питающего катушку 13, служащую для компенсации внешних магнитных полей. По величине тока через катушку судят об измеряемой величине. Для устранения влияния коэрцитивности пленки 4 предназначена вторая катушка 12, соединенная с генератором 14 высокочастотного сигнала. 1 ил.

Формула изобретения RU 2 035 048 C1

ОПТОЭЛЕКТРОННЫЙ ИЗМЕРИТЕЛЬ ПОСТОЯННЫХ МАГНИТНЫХ ПОЛЕЙ И ТОКОВ, включающий светодиод и расположенные по ходу его луча входной поляризатор, магнитооптическую пленку, анализатор с разведением лучей взаимно ортогональных поляризаций, два фотодиода, расположенных по ходу разведенных лучей, а также электромагнитную катушку, дифференциальный усилитель, компаратор и усилитель тока, соединенный выходом с катушкой, отличающийся тем, что в него дополнительно введены прямая оптическая призма с основанием в виде равнобедренного прямоугольного треугольника, дополнительная электромагнитная катушка, фильтр нижних частот и генератор, при этом магнитооптическая пленка выбрана с плоскостной анизотропией и расположена на оптическом контакте на гипотенузной грани призмы, оптические оси светодиода и анализатора перпендикулярны к второй и третьей боковым граням призмы соответственно, фотодиоды соединены с входами дифференциального усилителя, выход которого через фильтр нижних частот соединен с первым входом компаратора, второй вход которого заземлен, а выход соединен с усилителем тока, генератор соединен с дополнительной катушкой, причем обе катушки выполнены на одном полом каркасе, имеющем форму прямоугольного параллелепипеда, призма расположена внутри каркаса гипотенузной гранью в непосредственной близости к внутренней поверхности одной из его граней и параллельно ей, оси катушек ориентированы вдоль линии пересечения плоскости пленки и плоскости распространения света, при этом усилитель тока выполнен с выходным индикатором.

Документы, цитированные в отчете о поиске Патент 1995 года RU2035048C1

Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Патент США N 4947107, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 035 048 C1

Авторы

Варнавский Владимир Алексеевич

Лебедев Сергей Викторович

Толокнов Николай Александрович

Даты

1995-05-10Публикация

1993-04-30Подача