Изобретение относится к авиационно-космической технике, в частности к способу создания тяги гиперзвукового летательного аппарата (ГЛА) в крейсерском атмосферном режиме полета.
Известен способ создания тяги ГЛА, основанный на использовании энергетического потенциала водородного топлива [1]
Однако тепловая защита летательного аппарата (ЛА) при конвективном охлаждении теплонапряженных участков его конструкции невозможна, так как использование жидкого водорода в качестве теплоносителя из-за возникновения в области контакта криогенного теплоносителя (20К) с охлаждаемой конструкцией (4 ˙ 103К) аномальных термических напряжений приводит к разрушению охлаждаемого объекта.
Наиболее близким к предлагаемому является способ, заключающийся в том, что в процессе крейсерского атмосферного гиперзвукового полета исходное УВТ и воду смешивают, подогревают и затем подвергают при высокой температуре в присутствии паров воды термокаталитическому превращению в водородсодержащую топливную смесь [2] Термокаталитическое превращение (паровая конверсия углеводородов) обеспечивается за счет тепла, поступающего от нагревающихся в полете частей конструкции ЛА, и характеризуется большим эн- дотермическим эффектом (≈ 10000 кДж/кг) и получением свободного водорода (≈ 70 об.). Интенсивность отвода тепла от нагреваемой поверхности за счет эндотермических процессов зависит от величины теплового эффекта реакции и ее скорости, температурного диапазона протекания процесса, эффективной теплопроводности слоя катализатора.
Однако при высокотемпературном разложении УВТ происходит существенное зауглероживание катализатора после нескольких часов полета. Рабочий ресурс при этом составляет единицы часов гиперзвукового полета.
Задачей, на решение которой направлено изобретение, является получение высокоэффективной топливной смеси со свободным водородом за счет каталитического разложения исходного УВТ при одновременном активном охлаждении ГЛА, а также увеличение ресурса ГЛА.
Это достигается тем, что способ создания тяги ГЛА в крейсерском атмосферном режиме полета основан на смешивании части УВТ с водой, нагреве полученной смеси до температуры 300-400оС, разложении ее на низкотемпературном катализаторе с образованием метансодержащих продуктов, которые затем нагревают до температуры 400оС и разлагают на высокотемпературном катализаторе с образованием водородсодержащей смеси, в которую перед сжиганием в камере сгорания добавляют оставшееся УВТ, при этом воздушный поток перед сжиганием в камере сгорания ионизируют и воздействуют на него магнитным полем.
Реализация способа позволяет ассимилировать часть кинетической энергии обтекающего гиперзвукового воздушного потока и преобразовать ее в используемую на борту ГЛА химическую энергию, обеспечивая тем самым одновременное активное охлаждение ГЛА и получение высокоэффективной топливной смеси со свободным водородом. Для обеспечения оптимального режима горения полученной в полете топливовоздушной смеси на ионизированный воздушный поток воздействуют магнитным полем.
Реализация крейсерского гиперзвукового атмосферного полета основана на принципе активного энергетического взаимодействия ЛА с гиперзвуковым воздушным потоком. Тепло от аэродинамического нагрева планера используется в химических реакторах для паровой конверсии УВТ. При этом обеспечиваются получение оптимального вещественного состава топливной смеси и эффективное охлаждение теплонапряженных частей конструкции. Происходит это следующим образом. Часть исходного УВТ и воды разлагают в условиях низкотемпературного нагрева в присутствии катализатора. При этом жидкие углеводороды разлагаются (газифицируются), например, на высокоактивном никель-хромовом катализаторе.
Образуется газовая смесь из метана, менее склонного к зауглероживанию катализатора, диоксида углерода и небольшого количества водорода, тормозящего образование углерода. Кроме того, при низкотемпературном нагреве сжигаются вредные примеси. Затем полученную метансодержащую газовую смесь подвергают высокотемпературному эндотермическому разло- жению. Продукты разложения смешивают с исходным УВТ, получается высокоэффективное топливо, обогащенное свободным водородом.
Для обеспечения оптимального режима горения (полноты сгорания) топливовоздушную смесь сжигают в воздушном потоке, который предварительно ионизируют и затормаживают, воздействуя на него магнитным полем в воздухозаборнике двигателя.
При торможении ионизированного воздушного потока кинетическая энергия пот ока преобразуется в электрическую. Объемное торможение магнитным полем позволяет создать регулируемый по скорости воздушный поток.
Магнитогазодинамическое ускорение потока продуктов сгорания в сопле двигателя увеличивает его кинетическую энергию и обеспечивает разгон ГЛА в полете до первой космической скорости.
Эффективное охлаждение теплонапряженных частей конструкции ГЛА до температур 850-1000оС при крейсерском атмосферном полете осуществляется за счет того, что тепло от аэродинамического нагрева, "впускаемое" внутрь конструкции, расходуется на проведение термохимических реакций.
На чертеже показана схема реализации способа.
Топливные баки 1 и 2 с водой УВТ соответственно через систему 3 подачи топлива соединены с низкотемпературным химическим реактором 4, который связан с высокотемпературным химическим реактором 5. Система 6 смешения связана с баком 2 с УВТ и с высокотемпературным химическим реактором 5. Система 6 смешения соединяется с камерой 7 сгорания двигателя. Двигатель снабжен магнитогазодинамическим (МГД) генератором 8.
Смесь УВТ и воды из баков 1 и 2 поступает в систему 3, а оттуда в низкотемпературный реактор 4 с катализатором, расположенный в тех частях обшивки планера, где смесь нагревается, испаряется и перегревается до температуры 300-400оС. Затем перегретый пар конвертируется при указанной температуре практически в автоматическом режиме с образованием смеси, основным компонентом которой является метан (70-80 об.). Низкотемпературный реактор 4 выполняется в виде отдельного блока, который может быть легко заменен после полета в случае закоксованности катализатора. Образовавшаяся газовая смесь подается в высокотемпературный реактор 5, расположенный в теплонапряженных частях планера и двигателя. Продукты реакции, смешиваясь в системе 6 смешения с исходным топливом из бака 2, поступают в камеру 7 сгорания двигателя. Двигатель ГЛА снабжен устройством для ионизации воздуха в набегающем потоке и системами его магнитогазодинамического торможения и ускорения (МГД-генератор 8). На входе двигателя в воздухозаборнике МГД-генератор 8 осуществляет торможение ионизированного воздушного потока, и его кинетическая энергия преобразуется в электрическую. Это обеспечивает оптимальный режим горения топливовоздушной смеси в камере сгорания двигателя.
На выходе двигателя МГД-генератор 8 ускоряет поток продуктов сгорания и тем самым увеличивает его кинетическую энергию, обеспечивая разгон ГЛА до первой космической скорости.
Способ создания тяги ГЛА в крейсерском атмосферном режиме полета позволяет обеспечить полет со скоростями, выше 10000 км/ч, на высоте 30-60 тыс. м при максимальной дальности полета около 20000 км.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОДАЧИ УГЛЕВОДОРОДНОГО ТОПЛИВА В РЕАКТИВНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКЕ ЛЕТАТЕЛЬНОГО АППАРАТА И РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА ЛЕТАТЕЛЬНОГО АППАРАТА | 1981 |
|
RU2046203C1 |
ДВИГАТЕЛЬНАЯ УСТАНОВКА ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 1993 |
|
RU2076829C1 |
ГИПЕРЗВУКОВОЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ | 1999 |
|
RU2172278C2 |
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ | 2006 |
|
RU2330979C2 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1993 |
|
RU2062892C1 |
СИСТЕМА ПОДАЧИ УГЛЕВОДОРОДНОГО ТОПЛИВА ДЛЯ ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА И СПОСОБ ПОДАЧИ ТОПЛИВА В СИСТЕМУ | 2017 |
|
RU2663252C1 |
СПОСОБ СЖИГАНИЯ УГЛЕВОДОРОДОВ В ПОТОКЕ ИОНИЗИРОВАННОГО ВОЗДУХА | 2017 |
|
RU2687544C1 |
ПАНЕЛЬ ОБШИВКИ, ПОДВЕРГАЮЩАЯСЯ ЗНАЧИТЕЛЬНЫМ ТЕПЛОВЫМ НАГРУЗКАМ ОТ АЭРОДИНАМИЧЕСКОГО НАГРЕВА | 1993 |
|
RU2088495C1 |
Камера сгорания с каталитическим покрытием для прямоточного воздушно-реактивного двигателя и способ нанесения каталитического покрытия | 2020 |
|
RU2752960C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЛАЗМЫ | 1992 |
|
RU2035129C1 |
Использование: в авиационно-космической технике, а именно в способах создания тяги гиперзвуковых летательных аппаратов (ГЛА). Сущность изобретения: способ создания тяги ГЛА в крейсерском атмосферном режиме полета основан на смешении части углеводородного топлива (УВТ) с водой, нагреве полученной смеси до t-300-400°С и разложении ее на катализаторе с образованием метансодержащих продуктов, которые затем нагревают до t > 400°С и разлагают на катализаторе с образованием водородсодержащей смеси, в которую перед сжиганием в камере сгорания добавляют оставшееся УВТ, при этом воздушный поток перед сжиганием в камере сгорания ионизируют и воздействуют на него магнитным полем. 1 з.п.ф-лы, 1 ил.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
СОШНИК КАРТОФЕЛЕСАЖАЛКИ ДЛЯ КАМЕНИСТЫХ ПО&Ш*.^ . — | 0 |
|
SU167694A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1995-08-27—Публикация
1993-03-01—Подача