Изобретение касается термомагнитных явлений физики и может быть использовано в различных системах контроля, измерения, ориентации и корректировки положения тел в пространстве, основанных на реакции на изменение направления теплового излучения.
Известно устройство термомагнитного двигателя, работающего от энергии термальных вод [1]
Однако это устройство, обладающее спецификой работы от термальных вод, принципиально не достаточно эффективно работает от энергии теплового излучения.
Наиболее близким к предлагаемому по технической сущности является термомагнитный двигатель, работающий от солнечной энергии [2]
Это устройство содержит постоянный магнит, несущий диск, свободно вращающийся вокруг своей оси, на котором закреплены рабочие элементы из ферромагнитного материала. Данный термомагнитный двигатель работает в режиме периодического нагрева (от солнечной энергии) и охлаждения (при помощи, например, воды) рабочих ферромагнитных элементов. В результате нагрева одного (нескольких) рабочих элементов, на который (которые) фокусируется солнечная энергия, изменяется намагниченность ферромагнетика, который поворачивает весь диск с силой, пропорциональной намагниченности ферромагнетика, напряженности магнитного поля и массе диска. Затем после поворота начинает намагничиваться очередной (смежный) рабочий элемент и размагничиваться предыдущий и т.д.
Недостатком известного устройства является невозможность с его помощью с высокой точностью реагировать на изменение направления теплового излучения.
Целью изобретения является решение задачи точного реагирования на изменение направления теплового излучения, т.е. создание эффективного термомагнитного преобразователя энергии.
Для этого в датчике направления теплового излучения, содержащем постоянный магнит, несущий сегмент, свободно поворачивающийся вокруг оси в магнитном поле, на котором закреплены рабочие элементы из ферромагнитного материала, рабочие элементы сконцентрированы на дугообразном краю несущего сегмента в виде двух разнесенных рабочих областей, симметрично расположенных под "северным" и "южным" полюсами постоянного магнита, причем в сбалансированном положении несущего сектора тепловое излучение фокусируется в центр между двумя рабочими областями.
Сущностью изобретения является взаимодействие двух противоположно направленных сил Р1 и Р2, каждая из которых действует на свою рабочую область. Значение каждой из этих сил в общем виде определяется из выражения
F=m·σ(T·H) где m масса рабочих элементов;
σ намагниченность рабочих элементов,
Т температура нагрева рабочих элементов,
Н напряженность магнитного поля.
При точной фокусировке теплового потока в центр между двумя рабочими областями F1=F2 и сегмент удерживается в некотором исходном (уравновешенном) положении.
При отклонении теплового потока элементы одной рабочей области получают большую порцию теплового воздействия, чем элементы другой рабочей области, в результате чего F1 ≠ F2 и сегмент повернется в соответствующую сторону на соответствующий угол.
На чертеже изображен один из возможных вариантов термомагнитного преобразователя энергии.
Преобразователь содержит постоянный магнит 1, несущий сегмент 2, поворачивающийся вокруг оси 3, с рабочими областями 4 и 5, содержащими соответственно ферромагнитные рабочие элементы 4.1. 4.n и 5.1. 5.n, а также уравновешивающие пружины 6 и 7. Проекция 8 теплового излучения на рабочие области преобразователя соответствует его исходному (уравновешенному) положению при F1=F2.
Преобразователь работает следующим образом.
В исходном состоянии при отсутствии теплового излучения несущий сегмент 2 уравновешивается пружинами 6 и 7. При подаче теплового излучения 8 точно в центр между двумя рабочими областями 4 и 5 несущего сегмента 2 активизируется равное количество рабочих элементов в областях 4 и 5 (для изображенной на чертеже фокусировки по одному элементу: 4.n и 5.n). Это в магнитном поле магнит 1 создает равновесие сил F1 и F2, что обеспечивает неподвижность несущего сегмента 2.
При изменении направления теплового излучения, например, в сторону рабочей области 4 проекция 8 теплового излучения активизирует несколько рабочих элементов из области 4 и ни одного из области 5. В условиях F1>F2 несущий сегмент 2 повернется направо, в результате чего будут добавляться новые активизированные элементы рабочей области 4, что приведет к еще большему повороту несущего сегмента 2. Поворот прекратится, когда нарастающая сила F1 уравновесится нарастающим противодействием пружины 6, что будет соответствовать степени отклонения теплового излучения.
название | год | авторы | номер документа |
---|---|---|---|
ИМПУЛЬСНЫЙ ТЕРМОМАГНИТНЫЙ ПРЕОБРАЗОВАТЕЛЬ | 1992 |
|
RU2076397C1 |
СИСТЕМА СЛЕЖЕНИЯ ЗА ПЕРЕМЕЩАЮЩИМСЯ В ПРОСТРАНСТВЕ СВЕТОИЗЛУЧАЮЩИМ ОБЪЕКТОМ | 1992 |
|
RU2071581C1 |
ТЕРМОМАГНИТНЫЙ ДВИГАТЕЛЬ | 1992 |
|
RU2044159C1 |
СОЛНЕЧНЫЙ ДВИГАТЕЛЬ | 1992 |
|
RU2037071C1 |
ТАКТОВЫЙ ТЕРМОМАГНИТНЫЙ ДВИГАТЕЛЬ | 1992 |
|
RU2067213C1 |
МАГНИТОТЕПЛОВОЕ УСТРОЙСТВО | 2001 |
|
RU2199024C1 |
МАГНИТНЫЙ ДВИГАТЕЛЬ | 2005 |
|
RU2310265C2 |
УСТРОЙСТВО АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ЭЛЕКТРОГЕНЕРАТОРОМ | 2013 |
|
RU2537394C1 |
Поворотный переключатель | 1984 |
|
SU1241297A1 |
МАГНИТОТЕПЛОВОЙ РОТОРНЫЙ ДВИГАТЕЛЬ | 1993 |
|
RU2095626C1 |
Использование: энергетика, а также в измерительной технике, использующей тепловое излучение. Сущность изобретения: устройство содержит постоянный магнит 1, установленный на корпусе, ротор, выполненный в виде сегмента 2, на котором установлены термомагнитные рабочие элементы 4, 4.1 и 5, 5.1. Сегмент 2 соединен с корпусом посредством балансировочных пружин сжатия 6 и 7. 1 ил.
ТЕРМОМАГНИТНЫЙ ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ, содержащий корпус с закрепленным в нем неподвижным постоянным магнитом и установленный в корпусе ротор с термомагнитными элементами, источник нагрева и охлаждения, отличающийся тем, что ротор выполнен в виде сегмента, по дуге которого под разноименными полюсами постоянного магнита установлены термомагнитные элементы, а его боковые стороны и корпус соединены между собой посредством балансировочных пружин сжатия.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Магнитно-тепловой двигатель | 1983 |
|
SU1134774A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Авторы
Даты
1995-10-27—Публикация
1992-07-01—Подача