Изобретение относится к энергомашиностроению и может быть использовано, преимущественно, в вакуум-компрессорных установках для создания высокого разрежения, а также в гидровпнемодвигателях.
Известна многоступенчатая вихревая турбомашина, содержащая корпус с впускным и выпускным окнами и ротор с рабочими колесами, насаженными на вал. Проточная часть турбомашины состоит из последовательно соединенных перепускными каналами рабочих камер, каждая из которых образована полостями межлопаточных каналов рабочего колеса ступени и свободного (рабочего) канала, выполненного в корпусе статоре (авт. св. N 495452, кл. F 04 D 17/06, 1975; N 1566059, кл. F 01 D 13/00, 1990; N 1583644, кл. F 01 D 13/00, 1992; Nz 1657755, кл. F 04 D 17/06, 1992) в виде полуторообразной проточки. К недостаткам такой турбомашины можно отнести низкий КПД при работе в режиме вакуум-компрессора, что обусловлено, в основном, переточками рабочей среды из высоконапорного патрубка в низконапорный по кольцевым зазорам между поверхностями ротора и корпуса (статора).
Наиболее близкой к изобретению по совокупности признаков является многоступенчатая вихревая турбомашина, содержащая корпус с всасывающим и нагнетательным патрубками, в котором закреплен пакет профилированных колец статора, ротор, выполненный в виде пакета насаженных на вал дисков, каждый из которых расположен между кольцами статора с образованием рабочих камер, последовательно соединенных осевыми перепускными каналами, и смонтированные в корпусе опоры вала (Анохин В. Д. и Богатырев А. Г. Теория и расчет вихревых турбомашин. М. "Всесоюзный заочный машиностроительный институт". 1986, с. 59-61, рис. 5.3).
В этом устройстве, работающем в режиме вихревого вакуум-компрессора, значительно снижены обратные перетечки рабочей среды со стороны нагнетания в сторону всасывания по зазорам между статором и ротором благодаря их большой протяженности и сложной конфигурации. Однако наличие осевого усилия на роторе, которое возникает из-за разности давлений в крайних рабочих камерах и воспринимаемого опорами, относительная сложность профиля проточной части и трудоемкость монтажа, обусловленные особенностями конструктивного выполнения элементов статора и ротора, ограничивают надежность работы турбомашины.
Изобретение направлено на создание конструкции вихревой турбомашины с оптимальным использованием габаритного объема, эффективно и надежно работающей в режиме вакуум-компрессора.
Решение поставленной задачи обеспечивается тем, что в многоступенчатой вихревой турбомашине, содержащей корпус с всасывающим и нагнетательным патрубками, в котором закреплен пакет профилированных колец статора, ротор в виде пакета насаженных на вал дисков, каждый из которых размещен между кольцами статора с образованием рабочих камер, соединенных перепускными каналами, и смонтированные в корпусе опоры вала, всасывающий патрубок расположен в плоскости среднего поперечного сечения и сообщен с центральными рабочими камерами, а крайние рабочие камеры соединены соответственно с нагнетательными патрубками, диски ротора выполнены в виде двухстороннего рабочего колеса, разделенного радиальной проточкой, а между профилированными кольцами статора, которые, за исключением торцовых, имеют по два симметрично расположенных канала, дополнительно установлены плоские кольца, свободно входящие в радиальные проточки дисков ротора, при этом перепускные каналы рабочих камер каждой ступени расположены последовательно как в профилированных, так и в плоских кольцах статора и зеркально-симметрично относительно плоскости среднего поперечного сечения.
Кроме того, плоские и профилированные кольца статора, за исключением торцовых, выполнены разрезными, что существенно упрощает конструкцию и сборку вихревой турбомашины, а опоры вала могут быть расположены в торцовых крышках корпуса.
Предпочтительно, по крайней мере в одном нагнетательном патрубке установить глушитель шума.
Симметричное расположение рабочих камер и перепускных каналов относительно центрального всасывающего патрубка существенно снижает перетечки рабочей среды и осевое усилие на ротор, разгружая опоры, что повышает надежность и эффективность работы вихревой турбомашины, особенно в режиме вакуум-компрессора. При этом конструктивное выполнение дисков ротора с радиальными проточками и двухсторонним рабочим колесом, а статора с дополнительными плоскими кольцами, позволяет не только снизить массогабаритные параметры, но и улучшить характеристики проточной части.
На фиг. 1 представлен общий вид многоступенчатой вихревой турбомашины; на фиг. 2 цилиндрическое сечение (развертка) на диаметре Дс, поясняющее расположение перепускных каналов.
Вихревая турбомашина содержит корпус 1 с всасывающим патрубком 2, расположенным в плоскости среднего поперечного сечения А-А, и нагнетательными патрубками 3, в котором закреплен статор, собранный в виде пакета чередующихся профилированных колец 4 с рабочими каналами 5 и плоских колец 6, и ротор, выполненный в виде пакета насаженных на вал 7 дисков 8, представляющих собой двухстороннее рабочее колесо с лопатками 9, разделенными проточкой 10, в которую свободно (с зазором) входит соответствующее плоское кольцо 6 статора. Профилированные кольца 4 и плоские кольца 6 выполнены разрезными, т.е. составленными из нескольких секторов. Рабочие каналы 5 профилированных колец 4 каждой ступени снабжены отсекателями 11 и с примыкающими полостями межлопаточных каналов рабочих колес образуют рабочие камеры, которые сообщены между собой перепускными каналами 12, расположенными последовательно как в профилированных кольцах 4, так и в плоских кольцах 6 статора и зеркально-симметрично относительно плоскости среднего поперечного сечения А-А. При этом центральные рабочие камеры соединены с всасывающим патрубком 2, а крайние рабочие камеры, образованные торцовыми профилированными кольцами 13 с одним рабочим каналом, с нагнетательными патрубками 3. Вал 7 ротора установлен в опорах 14, размещенных в торцовых крышках 15 корпуса 1, а по крайней мере в одном из нагнетательных патрубков 3 смонтирован глушитель 16 шума.
Многоступенчатая вихревая турбомашина работает в режиме вакуум-компрессора следующим образом. При вращении ротора рабочая среда засасывается через всасывающий патрубок 2 и, разделяясь на два потока, поступает в центральные рабочие камеры, из которых по перепускным каналам 12 направляется к крайним рабочим камерам, и через нагнетательные патрубки 3 выбрасывается наружу. При этом рабочая среда под воздействием на нее лопаток 9 и стенок рабочего канала 5 совершает сложное спиралевидное движение в объеме рабочей камеры, обусловливающее последовательное повышение давления от всасывающего патрубка к перепускному каналу каждой следующей ступени.
Для работы вихревой турбомашины в режиме двигателя рабочая среда под давлением подается в нагнетательные патрубки 3.
название | год | авторы | номер документа |
---|---|---|---|
МНОГОСТУПЕНЧАТАЯ ВИХРЕВАЯ ТУРБОМАШИНА | 1992 |
|
RU2029134C1 |
ЦЕНТРОБЕЖНО-ВИХРЕВОЙ НАСОС | 2010 |
|
RU2456479C2 |
Осевой насос | 1990 |
|
SU1781462A1 |
КАВИТАЦИОННО-ВИХРЕВОЙ ТЕПЛОГЕНЕРАТОР | 2002 |
|
RU2235950C2 |
УСТРОЙСТВО ДЛЯ НАГРЕВА ВОДЫ | 2003 |
|
RU2257514C1 |
ГОРИЗОНТАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ НАСОС | 1999 |
|
RU2166131C2 |
МНОГОСТУПЕНЧАТАЯ РОТОРНО-ВИХРЕВАЯ МАШИНА С ОБЪЕДИНЕННЫМИ СТАТОРАМИ | 2007 |
|
RU2331796C1 |
ГОРИЗОНТАЛЬНЫЙ ЦЕНТРОБЕЖНЫЙ НАСОС | 2003 |
|
RU2246638C2 |
Разгрузочное устройство центробежного секционного насоса с геометрически замкнутыми наклонными несущими поверхностями | 2022 |
|
RU2791079C1 |
ТЕПЛОВОЙ КАВИТАЦИОННЫЙ ГЕНЕРАТОР | 2010 |
|
RU2422733C1 |
Сущность: всасывающий патрубок расположен в плоскости среднего поперечного сечения турбомашины и сообщен с центральными рабочими камерами, а крайние рабочие камеры соединены с нагнетательными патрубками, диски ротора выполнены в виде двухсторонних колес, разделенных радиальными проточками, статор выполнен в виде профилированных колес и плоских колес, свободно входящих в радиальные проточки. В кольцах статора выполнены последовательно перепускные каналы, кроме того в профилированных кольцах статора выполнены рабочие каналы. 3 з. п. ф-лы, 2 ил.
Анохин В.Д., Богатырев А.Г | |||
Теория и расчет вихревых турбомашин | |||
М., Всесоюзный заочный машиностроительный институт | |||
Пневматический водоподъемный аппарат-двигатель | 1917 |
|
SU1986A1 |
Авторы
Даты
1995-11-10—Публикация
1993-12-21—Подача