Предлагаемое изобретение относится к химической технологии и может быть использовано при регенерации воды из отработанных электролитов и концентрировании сточных вод гальванотехники.
Известно устройство, содержащее корпус, разделенный на камеры испарения и конденсации, форсунки для распыления упариваемого продукта сжатым воздухом, контур рециркуляции влаги, конденсируемой из воздуха на охладителе [1]
Известна выпарная установка, содержащая камеру испарения с нагревателем, камеру конденсации с охладителем, вентилятор с воздуховодом, соединяющим камеры испарения и конденсации, работа которой осуществляется испарением воды из упариваемого продукта в потоке воздуха, насыщаемого водяными парами и конденсацией их охладителем конденсатора [2]
Недостатками известных установок являются низкая энергетическая эффективность, наличие значительных теплообменных поверхностей и малая степень концентрирования упариваемого продукта.
Цель изобретения повышение экономичности работы установки за счет интенсификации процессов тепломассообмена, снижения энергозатрат, габаритов и металлоемкости теплообменного оборудования.
Цель достигается тем, что в известной установке, содержащей камеру испарения с нагревателем, камеру конденсации с охладителем, соединенные замкнутым воздуховодом с вентилятором и снабженные подводящими и отводящими штуцерами, камеры испарения и конденсации выполнены в виде аппаратов, каждый из которых включает установленные в верхней части циклонно-пенное, а в нижней теплообменное устройства. Теплообменное устройство выполнено в виде вертикального концентрического пучка труб, расположенного вокруг центральной трубы, причем нижняя трубная доска пучка установлена над штуцером подвода обрабатываемого продукта в аппарат, а верхняя совпадает с нижней границей окна подвода воздуха под слой жидкости циклонно-пенного устройства.
Использование циклонно-пенных устройств с тангенциальным подводом воздуха и с расположенными в нижней части теплообменниками позволяет значительно увеличить поверхность контакта между воздухом и жидкостью, интенсифицировать процессы тепло- и массообмена в газожидкостном пенном слое, а также позволяет осуществлять рециркуляцию упариваемого продукта или дистиллята без использования механических насосов за счет разности плотностей пенного слоя и циркулирующей жидкости.
Изобретение поясняется фиг. 1 и 2.
Установка (фиг. 1) содержит соединенные по замкнутому воздуховоду 1 аппарат 2 (камера испарения) с нагревателем 3, штуцерами входа упариваемого продукта 4, греющей среды 5 и воздуха 6 с тангенциальным его подводом, выхода греющей среды 7, упаренного продукта 8, воздуха 9 и аппарат 10 (камера конденсации) с охладителем 11, штуцерами входа охлаждающей среды 12, конденсата для первоначального заполнения в аппарат 13 и воздуха 14, выхода охлаждающей среды 15, конденсата 16 и воздуха 17, вентилятор 18.
Размещение теплообменного устройства показано на фиг. 2. Теплообменное устройство содержит концентрический вертикальный пучок труб 19, размещенный в корпусе 20 и расположенный вокруг центральной трубы 21, нижний конец которой установлен в нижней части аппарата, а верхний конец 22 служит порогом для газожидкостного пенного слоя. Нижняя трубная доска 23 теплообменного пучка труб установлена над штуцером 4 (13) подвода обрабатываемой жидкости в аппарат, а верхняя 24 совпадает с нижней границей окна подвода воздуха под слой жидкости циклонно-пенного устройства.
Установка работает следующим образом.
Упариваемая жидкость через штуцер 4 поступает в аппарат 2, смешивается с циркулирующей жидкостью, проходит через трубное пространство нагревателя 3 и нагревается, затем на выходе взаимодействует с воздухом, поступающим через штуцер 6. В образующемся пенном газожидкостном слое происходит нагрев и увлажнение воздуха с охлаждением циркулирующей жидкости. Охлажденная в пенном слое циркулирующая жидкость через порог 22 поступает в центральную трубу 21 и нижнюю часть аппарата на смешение с подпиточной обрабатываемой жидкостью. Часть упаренной жидкости в виде продукта выводится из аппарата через штуцер 8.
Греющая среда подается в межтрубное пространство теплообменника через штуцер 5 и выводится через штуцер 7.
Воздух, нагретый до определенной температуры и увлажненный до величины, соответствующей парциальному давлению водяных паров над пенным слоем, после взаимодействия с упариваемой жидкостью выходит из аппарата 2 через штуцер 9 и по воздуховоду 1 поступает на вход аппарата 10 через штуцер 14. Аппарат 10 предварительно заполняется водой через штуцер 13 до уровня, превышающего верхнюю границу окна подвода воздуха под слой жидкости. Воздух, взаимодействуя с обессоленной водой, охлаждается и часть водяных паров, соответствующая понижению температуры воздуха, из него конденсируется в пенном слое. Охлажденный воздух из аппарата 10 через штуцер 17 на вентилятор 18, частично нагревается и поступает по воздуховоду 1 в аппарат 2.
В аппарате 10 подогретая в пенном слое циркулирующая вода (конденсат) через порог 22 также поступает в центральную трубу 21 на рециркуляцию. В теплообменнике 11 происходит отвод тепла конденсации охлаждающей водой, подаваемой в межтрубное пространство через штуцер 12. Выход охлаждающей воды из аппарата осуществляется через штуцер 15.
Часть циркулирующего в аппарате 10 конденсата в виде продукта выводится из аппарата через штуцер 16.
Использование предлагаемой установки позволяет интенсифицировать процессы тепломассообмена при испарении и конденсации воды потоком воздуха, снизить энергозатраты, габариты и металлоемкость теплообменного оборудования при концентрировании водных растворов (электролитов) и получении из них конденсата.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕРМИЧЕСКОГО ОБЕЗВРЕЖИВАНИЯ ЖИДКИХ ОТХОДОВ | 1986 |
|
RU2012840C1 |
Способ термического обезвреживания жидких отходов | 1988 |
|
SU1545026A1 |
Котельная установка | 1989 |
|
SU1733838A1 |
Многоступенчатый аппарат мгновенного вскипания | 1989 |
|
SU1655528A1 |
Способ использования тепла отходящих газов | 1987 |
|
SU1502943A2 |
СПОСОБ ВЫЩЕЛАЧИВАНИЯ БОКСИТОВОЙ ПУЛЬПЫ, УСТАНОВКА (ВАРИАНТЫ) И ТЕПЛООБМЕННИК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2342322C2 |
МНОГОКОРПУСНАЯ ВЫПАРНАЯ УСТАНОВКА ДЛЯ ПИЩЕВЫХ ПРОДУКТОВ И ВЫПАРНОЙ АППАРАТ | 1992 |
|
RU2039438C1 |
КОНДЕНСАТОР-ИСПАРИТЕЛЬ | 1991 |
|
RU2013749C1 |
АЭРОДИНАМИЧЕСКАЯ ЛЕСОСУШИЛЬНАЯ КАМЕРА | 1993 |
|
RU2045719C1 |
Котельная установка | 1986 |
|
SU1408152A1 |
Изобретение относится к химической технологии и может быть использовано при регенерации воды из отработанных электролитов и концентрировании сточных вод гальванотехники. Установка содержит камеру испарения с нагревателем и камеру конденсации с охладителем. Камеры соединены замкнутым воздуховодом с вентилятором, снабжены подводящими и отводящими штуцерами и выполнены в виде аппаратов, каждый из которых включает установленные в верхней части циклонно-пенное, а в нижней теплообменное устройство. Теплообменное устройство представляет собой вертикальный концентрический пучок труб, расположенный вокруг центральной трубы, причем нижняя трубная доска пучка установлена над штуцером подвода обрабатываемого продукта в аппарат, а верхняя совпадает с нижней границей окна подвода воздуха под слой жидкости циклонно-пенного устройства. 1 з. п. ф-лы, 2 ил.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Таубман Е.И | |||
Выпаривание, М.: Химия, 1982, с.245-247, рис.8.6. |
Авторы
Даты
1995-12-27—Публикация
1991-07-08—Подача