Изобретение относится к технике разрушения эмульсий типа "вода в масле" и может быть использовано в основном при нефтепромысловой и нефтезаводской подготовке нефти.
Известно устройство для обезвоживания углеводородной жидкости, включающее заземленный внешний цилиндрический электрод, потенциалообразующий внутренний цилиндрический электрод, соосный с внешним, и соосную с электродами цилиндрическую диэлектрическую перегородку, расположенную между ними, внутри которой перемещается обезвоживаемая жидкость, а пространство между перегородкой и внешним электродом заполнено газом. За счет высокой степени неоднородности электрического поля, создаваемого системой цилиндрических соосных электродов с достаточно большим соотношением диаметров внешнего и внутреннего электродов, напряженность поля внутри перегородки может иметь значение, превышающее пробойное для обезвоживаемой жидкости, в то же время межэлектродный электрический пробой отсутствует, поскольку напряженность поля в пространстве между перегородкой и внешним электродом ниже пробойного значения для газа, заполняющего это пространство.
Недостатком этого устройства является необходимость подачи на электроды высоких разностей потенциалов для достижения в объеме обезвоживаемой жидкости требуемых напряженностей электрического поля, так как основное падение потенциала приходится на пространство между перегородкой и внешним электродом, заполненное газом, из-за низкой диэлектрической проницаемости газа по сравнению с диэлектрической проницаемостью обезвоживаемой жидкости, особенно при ее высокой обводненности. Кроме того, материал диэлектрической перегородки также характеризуется сравнительно низкой диэлектрической проницаемостью, что обуславливает высокие значения напряженности электрического поля в теле перегородки, что, в свою очередь, при наличии малейшего дефекта в материале перегородки приводит к ее разрушению, например вследствие частичного разряда из-за наличия в слое материала перегородки примесей или газовых полостей. Это повышает опасность межэлектродного пробоя, снижает надежность работы устройства.
Цель изобретения снижение требуемых значений разности потенциалов, подаваемых на электроды, и повышение надежности работы устройства.
Для этого в устройстве, включающем внутренний цилиндрический электрод, коаксиальный внешний цилиндрический электрод и расположенную между ними коаксиальную цилиндрическую перегородку, пространство между перегородкой и внешним электродом заполнено диэлектрической жидкостью с высоким значением диэлектрической проницаемости и низкой удельной электропроводностью, например глицерином, формамидом, н-метилфомамидом и т.п. а цилиндрическая перегородка состоит из трех последовательно соединенных секций двух диэлектрических, на входе в устройство и выходе из него, и металлической, расположенной непосредственно в зоне электрического поля.
Заполнение пространства между цилиндрической перегородкой и внешним электродом жидкостью с высоким значением диэлектрической проницаемости изменяет распределение электрического потенциала между внешним и внутренним электродами таким образом, что основная часть падения потенциала приходится на область, заключенную внутри цилиндрической перегородки, т.е. на объем обезвоживаемой жидкости. Это обусловливает повышение напряженности электрического поля в объеме обезвоживаемой жидкости по сравнению с вариантом заполнения пространства между перегородкой и внешним электродом газом при одинаковых разностях потенциалов, подаваемых на электроды.
Распределение напряженности поля во внутренней полости перегородки, т.е. в объеме обезвоживаемой жидкости, выражается формулой
E1= • r1≅ r≅ r2
где ε1 ε2 ε3 соответственно диэлектрические проницаемости обезвоживаемой жидкости, материала перегородки и вещества, заполняющего пространство между перегородкой и внешним электродом;
r1, r2, r3, r4 соответственно радиус внутреннего электрода, внутренний радиус перегородки, внешний радиус перегородки и внутренний радиус внешнего электрода;
r радиальное удаление от оси внутреннего электрода;
Φo разность потенциалов, подаваемая на электроды.
Это выражение показывает, что увеличение диэлектрической проницаемости вещества, заполняющего пространство между перегородкой и внешним электродом, приводит к уменьшению третьего слагаемого в знаменателе, соответствующему уменьшению величины знаменателя и повышению значений напряженности поля при той же разности потенциалов, а это, в свою очередь, обуславливает возрастание сил диполь-дипольного взаимодействия, интенсификацию процесса коалесценции капель воды.
В пространстве между перегородкой и внешним электродом напряженность поля
E3= • r3≅ r≅ r4
Отсюда видно, что в пространстве между перегородкой и внешним электродом при заполнении его жидкостью с высокой диэлектрической проницаемостью ( ε3 ) имеет место снижение значений напряженности электрического поля. Это, в свою очередь, повышает надежность устройства с точки зрения предотвращения пробоя.
Замена части диэлектрической перегородки в зоне электрического поля металлической секцией обуславливает нулевую напряженность в теле перегородки и приводит к дополнительному повышению напряженности поля в объеме обезвоживаемой жидкости. Первое видно из выражения для напряженности поля в теле перегородки при условии, что диэлектрическая проницаемость материала (металл) равна бесконечности ε2= ∞:
E2= • r2≅ r≅r3
Другой вывод следует из уравнения (1): при ε2= ∞ второе слагаемое в знаменателе становится равным нулю, величина значения уменьшается, напряженность Е1 возрастает.
На фиг. 1 представлена принципиальная схема устройства; на фиг.2 иллюстрация распределения потенциала и напряженности электрического поля для устройства с диэлектрической перегородкой при заполнении пространства между перегородкой и внешним электродом веществом с низкой диэлектрической проницаемостью; на фиг.3 то же, с диэлектрической перегородкой при заполнении этого пространства жидкостью с высокой диэлектрической проницаемостью; на фиг. 4 то же, с металлической перегородкой в зоне электрического поля при заполнении пространства диэлектрической жидкостью с высокой диэлектрической проницаемостью.
Все величины на графиках представлены в нормированном виде.
Устройство включает в себя внутренний цилидрический электрод 1, коаксиальную цилиндрическую перегородку с металлической вставкой 2 в зоне электрического поля, коаксиальный с перегородкой и внутренним электродом внешний цилиндрический электрод 3, снабженный по обоим торцам раструбами 4, соединенными с центрирующими бобинами 5, имеющими уплотнения 6, а также подводящий 7 и отводящий 8 патрубки; металлическая вставка 2 соединена на обоих концах с диэлектрическими патрубками 9.
Устройство работает следующим образом.
Обезвоживаемая углеводородная жидкость через подводящий патрубок 7 и изолирующий патрубок 9 поступает во внутреннюю полость цилиндрической перегородки 2, где под действием электрического поля происходит укрупнение капель воды и отделение их от жидкости. Высоковольтный электрический потенциал подается на внутренний электрод 1, внешний электрод 3 заземлен. Раструбы 4 служат для исключения концевой неоднородности электрического поля на торцах внешнего электрода, способной привести к пробою через электрическую жидкость, бобина 5 необходима для соблюдения коаксиальности внешнего электрода 3 и перегородки 2, что исключает наличие мест с локальной повышенной напряженности поля, отличной от расчетной; внешний электрод 3, соединенный через раструбы 4 с бобинами 5 образуют замкнутое пространство, заполняемое диэлектрической жидкостью с высокой диэлектрической проницаемостью, вытеканию которой препятствуют уплотнения 6. Выход разрушенной эмульсии реализуется через отводящий патрубок 8.
П р и м е р. Из технологических соображений приняты следующие параметры устройства:
радиус внутреннего электрода r1 2,5·10-3 м;
внутренний радиус цилиндрической перегородки r21,5·10-2 м;
внешний радиус перегородки r3 1,8·10-2 м;
внутренний радиус внешнего электрода r4 5·10-2 м;
электрический потенциал внутреннего электрода Φo 104 В.
При выполнении цилиндрической перегородки и диэлектрического материала, характеризующегося, как правило, низкой диэлектрической проницаемостью, и заполнении пространства между перегородкой и внешним электродом газом или веществом также с низким значением этого показателя (фиг.2) напряженность поля в объеме обезвоживаемой жидкости имеет сравнительно низкие значения и, наоборот, напряженность весьма высока в теле перегородки и в пространстве между перегородкой и внешним электродом, что снижает эффективность процесса обезвоживания и надежность устройства с точки зрения предотвращения межэлектродного пробоя.
Заполнение пространства между перегородкой и внешним электродом жидкостью с высокой диэлектрической проницаемостью (фиг.3) приводит к резкому снижению напряженности поля в этой жидкости, к повышению напряженности поля в объеме обезвоживаемой жидкости, но одновременно к повышению напряженности поля в теле перегородки, что также нежелательно с точки зрения предотвращения пробоя.
При выполнении части перегородки, находящейся в электрическом поле, из металла ( ε2= ∞ ) с одновременным заполнением пространства между перегородкой и внешним электродом диэлектрической жидкостью с высокой диэлектрической проницаемостью (фиг. 4) напряженность электрического поля в обезвоживаемой жидкости возрастает, в теле перегородки становится равной нулю и низкой в объеме диэлектрической жидкости.
Таким образом, при соответствующей толщине слоя жидкости, заполняющей пространство между перегородкой и внешним электродом, принципиально исключается возможность межэлектродного пробоя, одновременно повышается эффективность процесса обезвоживания углеводородной жидкости.
название | год | авторы | номер документа |
---|---|---|---|
АВТОНОМНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ МОДУЛЬ | 2000 |
|
RU2172796C1 |
УСТРОЙСТВО ДЛЯ ОБЕЗВОЖИВАНИЯ УГЛЕВОДОРОДНОЙ ЖИДКОСТИ | 2006 |
|
RU2326932C2 |
УСТРОЙСТВО ДЛЯ ГАШЕНИЯ ПЕНЫ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ | 1997 |
|
RU2132216C1 |
АВТОНОМНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМПЛЕКС | 2002 |
|
RU2225901C1 |
СПОСОБ СЕПАРАЦИИ МЕЛКОДИСПЕРСНЫХ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2136382C1 |
АВТОНОМНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМПЛЕКС | 2010 |
|
RU2435875C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭПОКСИДНЫХ СОЕДИНЕНИЙ | 2000 |
|
RU2180661C1 |
Способ удаления кислорода из жидкого топлива | 2021 |
|
RU2766511C1 |
АВТОНОМНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМПЛЕКС | 2005 |
|
RU2280713C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ ИЗОМЕРНОГО СТРОЕНИЯ | 1997 |
|
RU2123992C1 |
Устройство предназначено для разрушения эмульсий типа "вода в масле". Устройство содержит внутренний цилиндрический электрод, коаксиальный с ним внешний цилиндрический электрод, расположенную между ними коаксиально цилиндрическую перегородку, подводящий и отводящий патрубки. Пространство между перегородкой и внешним электродом заполнено диэлектрической жидкостью с высоким значением диэлектрической проницаемости и низкой удельной электропроводностью, например, глицерином, формамидом, н-метилформамидом и т. п. Цилиндрическая перегородка состоит из трех последовательно соединенных секций - двух диэлектрических, на входе в устройство и выходе из него, и металлической, расположенной в зоне электрического поля. 1 з. п. ф-лы, 4 ил.
Устройство предотвращения нежелательного вызова | 1982 |
|
SU1127103A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1996-03-27—Публикация
1993-04-30—Подача