Изобретение относится к датчикам, предназначенным для детектирования и определения концентрации компонентов газовой смеси.
Большинство датчиков этого класса содержит чувствительный элемент с химическим реагентом, способным взаимодействовать с детектируемым веществом, в результате его изменяются его характеристики.
Наиболее близким к предлагаемому является устройство, принцип действия которого основан на измерении поглощения света при прохождении через чувствительный элемент, представляющий из себя фотополимер с химическим реагентом, причем величина поглощения зависит от концентрации газа в окружающей среде.
Недостатками этого датчика являются необходимость предварительной обработки (облучения) полимера, а также влияние флуктуаций интенсивности сигнала источника и приемника света на точность измерения.
Целью изобретения является повышение надежности измерений концентрации компонентов газовой смеси.
Цель достигается тем, что в качестве чувствительного элемента датчика предложено использовать кремниевые колебательные структуры с нанесенным полимерным покрытием, способным взаимодействовать с детектируемым газом.
Резонансные частоты кремниевых колебательных структур зависят как от внешних условий, так и от конфигурации самих резонаторов. Так, изменение массы резонатора (например, мембраны, мостика или структуры другого вида) приводит к изменению резонансной частоты, то есть может детектироваться. Именно на основе этого эффекта может быть создан датчик на некоторые вещества, содержащиеся в газовых смесях (например, С2Сl4, С2Н5ОН, С6Н14, С7Н8, С5Н5Ме и др.) и адсорбируемые в пленку реагента, нанесенную на поверхность колебательной структуры.
Таким образом, чувствительным элементом датчика является кремниевый микрорезонатор, полученный, например, методом анизотропного химического травления в виде мостика с закрепленными концами и размерами 1000х20х2 мкм3. Известно, что у структур такого размера и вида поперечные колебания с характерными частотами порядка десятков и сотен килогерц легко возбуждаются с помощью лазерного излучения мощностью всего 0,01-1 мВт, модулированного с определенной частотой, а в случае совпадения возбуждающей частоты с одной из резонансных частот амплитуда соответствующей моды колебаний резко возрастает.
Точность измерения изменения массы резонатора определяется шириной резонансного пика и, соответственно, добротностью Q колебаний. Добротность определяется величиной затухания колебаний, зависящей от многих факторов, в том числе от условий внешней среды и технологии изготовления. Однако высокие механические качеств кремния как материала для такого типа структур обуславливают высокие получаемые значения добротности (1000-10000).
Минимальный детектируемый прирост массы дается формулой m-m1 2m/Q, (где m масса резонатора, m1 масса резонатора с детектируемым адсорбированным газом), поэтому миниатюрные размеры резонатора и высокие добротности позволяют создавать чувствительные и надежные датчики на различные газы.
П р и м е р. С помощью пленки диметилполисилоксана толщиной около 100 нм, нанесенной на поверхность кремниевого микрорезонатора, выполненного в виде мостика с размерами 1000х20х2 мкм, можно измерять концентрацию С2Cl4 в окружающей среде с минимально детектируемой величиной порядка 10 ррm.
название | год | авторы | номер документа |
---|---|---|---|
МИКРОРЕЗОНАТОРНЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК КОНЦЕНТРАЦИИ ГАЗОВ | 1998 |
|
RU2142114C1 |
УСТРОЙСТВО ДЛЯ ДЕТЕКТИРОВАНИЯ МИКРОПРИМЕСЕЙ ГАЗОВ | 1990 |
|
RU2022252C1 |
Пьезорезонансный сенсор микроконцентрации веществ | 2019 |
|
RU2722975C1 |
МНОГОКАНАЛЬНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ ИЗМЕРИТЕЛЬНАЯ СИСТЕМА КОНЦЕНТРАЦИИ РАЗЛИЧНЫХ ГАЗОВ | 2002 |
|
RU2241217C2 |
МИКРОРЕЗОНАТОРНЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ФИЗИЧЕСКИХ ВЕЛИЧИН | 1997 |
|
RU2135963C1 |
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛ СО И CO В ГАЗООБРАЗНОЙ СРЕДЕ И УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛ СО И CO В ГАЗООБРАЗНОЙ СРЕДЕ | 2008 |
|
RU2384836C1 |
ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ЖИДКОСТЕЙ | 1998 |
|
RU2134425C1 |
ДАТЧИК МАГНИТНОГО ПОЛЯ | 1999 |
|
RU2150712C1 |
МИКРОРЕЗОНАТОРНЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК УГЛОВЫХ ПЕРЕМЕЩЕНИЙ | 1998 |
|
RU2142117C1 |
БОЛОМЕТР, ТЕПЛОВОЙ ДАТЧИК, ТЕПЛОВИЗОР, СПОСОБ РАБОТЫ БОЛОМЕТРА, СПОСОБ РАБОТЫ ТЕПЛОВОГО ДАТЧИКА | 2022 |
|
RU2785895C1 |
Использование: в газовых датчиках при детектировании и определении концентрации компонентов газовой смеси. Сущность изобретения: чувствительный элемент газового датчика содержит основание с нанесенным на него полимерным покрытием, адсорбирующим газ. В качестве основания использован кремниевый микрорезонатор.
Чувствительный элемент газового датчика, содержащий основание с нанесенным на него полимерным покрытием, адсорбирующим газ, отличающийся тем, что в качестве основания использован кремниевый микрорезонатор.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Патент США 4842783, кл | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1996-05-27—Публикация
1993-06-28—Подача