СПОСОБ ИЗМЕРЕНИЯ ОПТИЧЕСКОГО СИГНАЛА ПРИ ИСПОЛЬЗОВАНИИ АМПЛИТУДНЫХ ОПТИЧЕСКИХ ДАТЧИКОВ Российский патент 1996 года по МПК G01N21/39 

Описание патента на изобретение RU2069349C1

Изобретение относится к области волоконной оптики и наиболее эффективно может быть использовано при работе с амплитудными оптическими датчиками, в которых состояние контролируемого параметра определяют по изменению амплитуды оптического сигнала, подаваемого на указанный датчик.

Известен способ [1] при котором амплитуду оптического сигнала, прошедшего через амплитудный оптический датчик, сравнивают с амплитудой исходного сигнала и по ее изменению определяют изменение контролируемого параметра. Недостатком данного способа является то, что изменение интенсивности оптического сигнала в результате нестабильности излучателя или изменения пропускания оптической линии приводит к ошибке, которая может быть весьма значительной.

Наиболее близким к предлагаемому является способ [2] при котором оптический сигнал пропускают через оптическую линию и амплитудный оптический датчик. При этом исходный сигнал состоит из излучения с длинами волн λ1 и λ2, полученными из одного источника, и выбранными таким образом, что изменение контролируемого параметра изменяет амплитуду излучения только на одной длине волны, например λ1, а изменение пропускания оптической линии и нестабильность источника излучения в равной мере отражаются на излучении с длиной волны λ1 и λ2.
Таким образом, зная исходное отношение мощностей К излучения на длине волны λ1 и λ2;
,
где мощность излучения на длинах волн λ1 и λ2, можно определить относительное изменение сигнала при прохождении излучения на тестирующей длине волны через амплитудный оптический датчик с исключением ошибки, связанной с нестабильностью (дрейфом мощности) источника излучения и изменением пропускания оптической линии. В этом случае

Здесь Р коэффициент, отражающий изменение мощности излучения за счет нестабильности излучателя и изменения пропускания оптической линии;
S коэффициент, вызывающий изменение мощности излучения на длине волны λ1 в датчике за счет изменения контролируемого параметра;
мощности излучения на выходе из оптической системы;
мощности излучения на входе на соответствующих длинах волн.

Недостатком данного способа является невозможность использования монохроматического источника излучения. Кроме того, применение данного способа возможно только в случае, когда изменение контролируемого параметра не влияет на изменение интенсивности излучения на длине волны λ2, что сужает функциональные возможности способа.

Технический результат, заключающийся в получении достоверных показаний изменения мощности излучения проходящего через амплитудный оптический датчик при использовании монохроматического излучения, достигается заявляемым способом.

Сущность заявляемого способа состоит в том, что оптический сигнал пропускают через оптическую линию и амплитудный оптический датчик, при этом оптический сигнал подают в виде импульсов длительностью τ и периодом T = nτ, где n > 2, при этом перед амплитудным оптическим датчиком оптический сигнал разделяют на два сигнала, один из которых пропускают через амплитудный оптический датчик, а другой через линию задержки со временем задержки to, где (T-τ)>to>τ, а об изменении контролируемого параметра судят по отношению амплитуд импульсов, прошедших через амплитудный оптический датчик и линию задержки.

Указанная совокупность признаков позволяет использовать монохроматический источник излучения и в то же время исключить ошибку определения состояния контролируемого параметра, возникающую вследствие нестабильность источника излучения и изменения пропускания оптической линии.

Способ поясняется чертежами, где изображено: на фиг. 1 блок-схема устройства для осуществления способа; на фиг. 2а график импульсной подачи оптических сигналов; на фиг. 2б график оптических сигналов, направляемых на амплитудный оптический датчик и в линию задержки; на фиг. 2в график оптических сигналов, прошедших через амплитудный оптический датчик и через линию задержки; на фиг. 2г график оптических сигналов, прошедших через амплитудный оптический датчик и через линию задержки при условии изменения интенсивности света.

В соответствии с фиг. 1 устройство содержит источник излучения 1, оптическую линию 2, разветвители 3, 4, амплитудный оптический датчик 5, линию задержки 6, фотоприемник 7.

На фиг. 2 показаны:
I и t обозначения координат, где I мощность оптического сигнала, t - время.

Io исходная мощность оптического излучения, попадающего в оптическую линию 2 из источника излучения 1.

I1 и I2 мощности разделенных разветвителем 3 оптических сигналов, направляемых в датчик (I1) и в линию задержки 6 (I2).

I3 мощность оптического сигнала, прошедшего через датчик.

I4 мощность оптического сигнала, прошедшего через датчик при условии изменения интенсивности света источника излучения и пропускания оптической линии.

I5 мощность оптического сигнала, прошедшего через линию задержки при условии изменения интенсивности света источника излучения и пропускания оптической линии.

to время задержки.

Т период следования импульсов.

τ длительность импульса.

Способ реализуется блок-схемой следующим образом.

Оптический сигнал Io (фиг. 2а), излучаемый источником 1, попадает в оптическую линию 2 и разделяется на сигналы I1 и I2 разветвителем 3. Сигнал I1, подается на амплитудный оптический датчик 5. Сигнал I2 подается в линию задержки 6. Сигнал I1, пройдя через датчик 5, превращается в сигнал I3, сигнал I2, проходя через линию задержки 6, не изменяется по мощности, но появляется с задержкой to. В случае дрейфа интенсивности источника излучения 1 или изменения степени пропускания оптической линии связи 2 сигнал I3 превращается в сигнал I1, а сигнал I2 в сигнал I5.

Импульсная подача позволяет разделить исходный сигнал Io на два I1 и I2, пропустить их по разным каналам, а именно через датчик 5 и через линию задержки 6. Очевидно, что сигнал, прошедший через линию задержки 6, не изменяет своей мощности, в то время как мощность сигнала I1, прошедшего через датчик 5, меняется с I1 до I3 при этом I3 SI1 где
S определяется значением контролируемого параметра.

Дрейф мощности источника излучения 1 и изменение пропускания оптической линии 2 в равной степени сказываются на изменении величины сигналов I3 и I2, которые принимают значение соответственно I4 и I5 т.е.

I4 rI3
I5 rI2,
где r коэффициент, определяющийся дрейфом интенсивности источника излучения 1 и изменением пропускания оптической линии 2.

Сигналы I4 и I5 подаются на фотоприемник 7 через разветвитель 3. Периодичность Т подачи импульсов Io выбирается из соотношения T = nτ,, где n > 2, а to выбирается из соотношения (T-τ)>to>τ..

Таким образом регистрируют два сигнала I4 и I5. Состояние контролируемого параметра определяют из отношения:

где К коэффициент, являющийся характеристикой разветвителя 3.

Таким образом, способ позволяет исключить ошибку определения состояния контролируемого параметра, возникающую в результате дрейфа мощности источника излучения и изменения пропускания оптической линии, поскольку отношение I4/I5 от этих параметров не зависит.

Кроме того, способ позволяет использовать монохроматический источник излучения, например лазерный генератор. В итоге он становится пригодным для работы с амплитудными оптическими датчиками, в которых изменение контролируемого параметра влияет на изменение мощности оптического излучения во всем спектральном диапазоне.

Похожие патенты RU2069349C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГАЗА 1996
  • Белогуров Д.А.
  • Хиврин М.В.
  • Пошехонов А.С.
RU2134874C1
ОПТИЧЕСКИЙ ФИЛЬТР ДЛИН ВОЛН И ОПТИЧЕСКИЙ ДЕМУЛЬТИПЛЕКСОР 1997
  • Джанг Джо-Ньюнг
RU2188512C2
УСТРОЙСТВО ДЛЯ СОЕДИНЕНИЯ ВОЛОКОННО-ОПТИЧЕСКИХ СВЕТОВОДОВ 1995
  • Белогуров Д.А.
  • Берикашвили В.Ш.
  • Машкова Т.В.
  • Хиврин М.В.
RU2104569C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ УРАНА ПО СПЕКТРАМ ЛЮМИНЕСЦЕНЦИИ КРИСТАЛЛОФОСФОРОВ 2010
  • Могилевский Александр Наумович
  • Фабелинский Юрий Иммануилович
RU2413203C1
ВОЛОКОННО-ОПТИЧЕСКИЙ АКСЕЛЕРОМЕТР 1996
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
RU2115933C1
ПЕРЕНОСНОЙ ШАХТНЫЙ СИГНАЛИЗАТОР МЕТАНА 1992
  • Львовский М.Б.
  • Тросман Г.С.
RU2029099C1
УСТРОЙСТВО КОНТРОЛЯ СОДЕРЖАНИЯ ШЛАМА В МАГНЕТИТОВОЙ СУСПЕНЗИИ 1990
  • Синепольский В.С.
  • Земмерс Л.Я.
  • Михайлов Л.М.
RU2018373C1
ФАЗОВРАЩАТЕЛЬ 2011
  • Яковлев Михаил Яковлевич
  • Цуканов Владимир Николаевич
RU2454759C1
СПОСОБ ДЕТЕКТИРОВАНИЯ МЕРКАПТАНОВОЙ ОДОРИЗАЦИОННОЙ СМЕСИ ПРИРОДНОГО ГАЗА В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ 2004
  • Усошин В.А.
  • Петров Н.Г.
  • Клищевская В.М.
  • Есин Ю.И.
  • Киреев С.В.
  • Шнырев С.Л.
  • Подоляко Е.М.
RU2267114C1
Оптическое устройство для контроля заполнения пути 2018
  • Баяндурова Александра Александровна
  • Ковалев Сергей Михайлович
  • Соколов Сергей Викторович
  • Суханов Андрей Валерьевич
  • Розенберг Игорь Наумович
RU2682523C1

Иллюстрации к изобретению RU 2 069 349 C1

Реферат патента 1996 года СПОСОБ ИЗМЕРЕНИЯ ОПТИЧЕСКОГО СИГНАЛА ПРИ ИСПОЛЬЗОВАНИИ АМПЛИТУДНЫХ ОПТИЧЕСКИХ ДАТЧИКОВ

Использование: изобретение относится к области волоконной оптики и может быть использовано в области разработки измерительных устройств. Сущность заключается в том, что с целью повышения достоверности измерения оптический сигнал подают импульсно. Перед датчиком его разделяют на два сигнала. Один из сигналов пропускают через датчик, где он претерпевает изменение от изменения контролируемого параметра, а другой - через линию задержки. По отношению величин сигналов судят об изменении параметра. 2 ил.

Формула изобретения RU 2 069 349 C1

Способ измерения оптического сигнала при использовании амплитудных оптических датчиков, включающий последовательную подачу оптического сигнала в оптическую линию и амплитудный оптический датчик и проведение измерений по значению контролируемого параметра, отличающийся тем, что оптический сигнал подают в оптическую линию в виде импульсов, длительностью τ с периодом T = nτ где n > 2, при этом перед амплитудным оптическим датчиком оптический сигнал разделяют на два сигнала, один из которых пропускают через амплитудный оптический датчик, а другой через линию задержки с временем задержки t0, где (T-τ) > to> τ, и определяют значение контролируемого параметра по отношению амплитуд импульсов, прошедших через амплитудный оптический датчик и линию задержки.

Документы, цитированные в отчете о поиске Патент 1996 года RU2069349C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Патент ФРГ N 3728310, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент ФРГ N 3741026, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 069 349 C1

Авторы

Белогуров Д.А.

Бойков М.В.

Козленков И.А.

Машкова Т.В.

Тарасова О.В.

Хиврин М.В.

Даты

1996-11-20Публикация

1993-08-09Подача