СПОСОБ ЧАСТОТНО-ДИСТАНЦИОННЫХ ЗОНДИРОВАНИЙ Российский патент 1997 года по МПК G01V3/06 

Описание патента на изобретение RU2072537C1

Изобретение относится к геоэлектроразведке на переменном токе, возбуждаемом в земле индуктивным способом. Область преимущественного применения: инженерно-строительные изыскания, поиски и разведка россыпных месторождений, подземных вод, геоэкологические, геокриологические и другие исследования.

Известен способ низкочастотных дистанционных зондирований при малых параметрах поля с возбуждающим вертикальным магнитным диполем и измерением отношения большой (Нa) к малой (Нb) оси эллипса поляризации магнитного поля [1] в котором рабочую частоту выбирают в области малых параметров поля (Нb/Ha<<1), на этой частоте определяют электросопротивление среды и изучают зависимость от разноса зондирующей установки. Благодаря индуктивному возбуждению и приему поля этот способ можно применять там, где из-за сложности или невозможности заземлений контактные методы электромагнитных зондирований не применимы.

Однако этот способ имеет недостаток, заключающийся в том, что для определения границы области малых параметров при дистанционном зондировании необходимо выполнять многочастотные наблюдения. Это усложняет процесс зондирования и снижает производительность работ. Недостаток заключается и в том, что в области Нb/Ha<<1 полезный сигнал (Нb), содержащий информацию об исследуемой среде, очень мал по абсолютной величине, из-за чего понижается точность измерений.

Для преодоления указанных затруднений переходят к изопараметрическим частотно-дистанционным зондированиям, в которых при изменении разноса одновременно по определенному закону меняется и частота поля. В способе, принятом нами за прототип [2] связь между частотой (f) и разносом (r) задается равенством
(1)
где Р параметр поля (Р 0,1 10), μo магнитная постоянная, σ(h) - удельная электропроводность слоев геоэлектрического разреза, слагающих исследуемую геологическую среду. При зондировании изменяют частоту и разнос так, чтобы произведение r2•f было неизменным, т.е.

(2)
где А постоянная зондирования.

Существенный недостаток способа-прототипа неоднозначность определения электросопротивления среды из-за неопределенности постоянной зондирования А. Из (2) следует, что для определения А нужно задаться параметром поля Р, для чего нужно знать функцию σ(h), т.е. как раз ту характеристику среды, для получения которой и выполняются зондирования. При практических работах по способу-прототипу постоянную А выбирают из предположения, что априорно известна и неизменна электропроводность верхнего слоя, т. е. в (2) полагают, что σ(h)= σ1 и P=P1 Но это возможно лишь в одном, частном случае, когда, например исследуемый массив горных пород покрыт слоем воды, и используется при морских изопараметрических зондированиях. В общем же случае, как видно из (2), постоянному значению А соответствует множество значений Р и σ1. Такая неоднозначность сдерживает применение способа-прототипа на суше, т.к. в сухопутных условиях приповерхностный слой земли обычно неоднороден как по вертикали, так и по горизонтали.

Технический результат предлагаемого изобретения устранение неоднозначности определения электросопротивления среды при изопараметрическом зондировании и расширение за счет этого области применения частотно-дистанционных зондирований при работе в сухопутных условиях. Технический результат достигается тем, что зондирование осуществляется при постоянном, контролируемом в процессе работ отношении Нa/Hb С, по теоретической зависимости Нa/Hb от параметра поля Р в однородном полупространстве находят для избранного С постоянный параметр Р и по формуле (1) определяют кажущееся сопротивление и геоэлектрический разрез (функцию σ(h)).

На фиг.1 изображена структурная схема устройства для осуществления предлагаемого способа; на фиг.2 результаты математического моделирования, иллюстрирующие возможности способа и принцип выбора постоянной зондирования С; на фиг.3 результаты практического опробования предлагаемого способа.

Устройство для осуществления предлагаемого способа содержит следующие узлы и блоки: возбуждающий вертикальный магнитный диполь 1, генераторный блок 2, первая шина управления 3, приемный датчик 4 поля Нa, приемный датчик 5 поля Hb, первый и второй селективные усилители 6 и 7, первый и второй детекторы 8 и 9, аналоговый делитель 10, регистратор 11, вторая шина управления 12. Первая шина управления 3 служит для задания частоты f тока в возбуждающем магнитном диполе 1, а вторая шина управления 12 для перестройки рабочей частоты f селективных усилителей 6 и 7.

Работа по предлагаемому способу начинается с наивысшей рабочей частоты (f1). Изменяя по профилю расстояние между генератором и приемником, находят точку на профиле, в которой отношение Нa/Hb на частоте f1 равно принятому С, и измеряют это расстояние (r1). Затем в n раз понижают частоту генератора и находят на профиле новую точку, в которой Нa/Hb С, и снова измеряют расстояние между приемником и генератором (r2) и т.д. По окончании наблюдений получают ряд значений разносов (r1, r2,ri.rN) и соответствующих им частот (f1, f2, fi.fN), для которых выполняется равенство Нa/Hb С. По теоретическому графику Ha/Hb F(P) в однородном полупространстве определяют, какому значению Р соответствует избранное отношение Нa/Hb C. При обработке данных наблюдений по известному Р и параметром зондирующей установки (ri, fi) определяют геоэлектрический разрез.

Таким образом в предлагаемом способе реализуется принцип изопараметрического зондирования, но в отличие от прототипа электромагнитный параметр Р всегда априори известен и постоянен в процессе зондирования, что и обеспечивает однозначность определения электросопротивления геологической среды.

Теоретическая проверка предлагаемого способа сделана при расчете кривых кажущегося сопротивления на моделях горизонтально-слоистой среды. На фиг.2 приведены расчетные графики для двухслойной среды с контрастностью сопротивлений ρ21= 1/16. Цифры на графиках значения постоянной зондирования Нa/Hb С она принималась равной 2,5; 5; 10; 20 и ∞, что соответствует Р, равному 2,2; 1,05; 0,666; 0,455 и P_→ 0.
Как видно из фиг.2 в разрезе с ρ21 16 кривые при С 10 и 20 практически сливаются с предельной для малых параметров поля C= ∞. Определить по ним три разреза, глубину залегания границы раздела ρ21 и электросопротивление ρ2, (например по углу наклона асимптотической ветви кривой и ее пересечению с линией ρ1) можно при разносах в 1,5 2 раза меньших, чем по кривым с постоянной С 5 и 2,5. В разрезе с ρ21 1/16 по мере уменьшения С возрастает степень дифференцированности кривых . Наиболее дифференцирована и выразительна кривая при С 5; по ней определить параметры среды (ρ1, h1, ρ2) можно в наименьшем интервале изменения разносов. Кривая с С 2,5 при ρ21 1/16 на фиг.2 отсутствует, т.к. в разрезах с ρ21 минимальное отношение Нa/Hb>2,5, кроме начальной и конечной асимптотических ветвей. Можно следовательно считать, что при практическом выполнении зондирований по предлагаемому способу оптимальным является значение постоянной С, лежащее в пределах 5 10. Значение С принимается равным 10 (Р 0,666) при зондировании сред типа ρ21 и равным 5 (Р 1,05), если изучаемая среда относится к типу ρ21.

Предлагаемый способ экспериментально проверен на полигоне Института геофизики УрО РАН. На участке испытаний поверхностные песчано-глинистые отложения небольшой мощности (1 2 м) плавно переходят в кору выветривания зеленокаменных пород, распространяющуюся на глубину более 1 м. При опробовании использовали аппаратуру ДЭМП-СЧ с рабочими частотами 1280, 640, 320, 160, 80, 40 и 20 кГц. По функциональным возможностям эта аппаратура среди серийно выпускаемых в СНГ типов наиболее близка к требуемой для осуществления предлагаемого способа. Отношение Нa/Hb выбрали равным 10. Применяли методику с закрепленным передатчиком и перемещением по профилю приемника. На фиг. 3 приведен график полученный в интервале частот 640 20 кГц. На частоте 640 кГц найденный разнос равнялся 2,7 м, на частоте 20 кГц - 25,7 м. График указывает на монотонное возрастание электросопротивления с глубиной от 43 Ом до 95 Ом. Для сравнения на той же фиг.2 приведен график ρк ВЭЗ на постоянном токе. Зондирование ВЭЗ сделано в средней точке профиля изопараметрического зондирования. График ρк (АВ/2) ВЭЗ также показывает на возрастание электросопротивления с глубиной, хотя значения ρк больше в среднем в 1,3 раза. Такое различие вполне объяснимо несовпадением на профиле точки записи в симметричной установке ВЭЗ и в дипольной установке, применяемой при частотно-дистанционном зондировании.

По геологической эффективности при зондировании слабоконтрастной геологической среды предлагаемый способ, как видим, близок к методу ВЭЗ, принятому нами за объект сравнения. В отличие от объекта сравнения индуктивный способ (благодаря использованию в нем индуктивного возбуждения и приема поля) позволяет осуществлять зондирование при замерзшем поверхностном слое, на каменистом грунте, со льда водоемов и других подобных условиях, когда выполнить ВЭЗ практически невозможно.

Похожие патенты RU2072537C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЙ ПРИ ДИСТАНЦИОННО-ЧАСТОТНОМ ЗОНДИРОВАНИИ С ВОЗБУЖДАЮЩИМ ВЕРТИКАЛЬНЫМ МАГНИТНЫМ ДИПОЛЕМ 1995
  • Титлинов В.С.
  • Журавлева Р.Б.
RU2098846C1
ИНДУКТИВНЫЙ СПОСОБ ЭЛЕКТРОМАГНИТНОГО МОНИТОРИНГА ПРОЦЕССА ОТТАЙКИ ГРУНТА 1997
  • Титлинов В.С.
  • Человечков А.И.
  • Астафьев П.Ф.
  • Вишнев В.С.
RU2156986C2
СПОСОБ ИНДУКЦИОННОГО ВЕРТИКАЛЬНОГО ЗОНДИРОВАНИЯ 1998
  • Человечков А.И.
  • Чистосердов Б.М.
RU2156987C2
СПОСОБ ИНДУКЦИОННОГО ВЕРТИКАЛЬНОГО ЗОНДИРОВАНИЯ 2002
  • Чистосердов Б.М.
  • Человечков А.И.
  • Байдиков С.В.
RU2230341C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДВУХСЛОЙНОЙ СРЕДЫ С НАКЛОННОЙ ГРАНИЦЕЙ РАЗДЕЛА 1995
  • Чистосердов Б.М.
RU2098845C1
СПОСОБ ВЕРТИКАЛЬНОГО ИНДУКЦИОННОГО ЗОНДИРОВАНИЯ 2006
  • Чистосердов Борис Михайлович
RU2310214C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ЗАЛЕГАНИЯ РУДНОГО ТЕЛА 2001
  • Человечков А.И.
  • Чистосердов Б.М.
RU2207595C2
ИНДУКТИВНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВАРИАЦИЙ ЭЛЕКТРОСОПРОТИВЛЕНИЯ ГЕОЛОГИЧЕСКОЙ СРЕДЫ 1995
  • Титлинов В.С.
  • Улитин Р.В.
  • Человечков А.И.
RU2093862C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2006
  • Улитин Руслан Васильевич
  • Федорова Ольга Ивановна
RU2332690C1
СПОСОБ ИНДУКЦИОННОГО КАРОТАЖА 2014
  • Ратушняк Александр Николаевич
  • Теплухин Владимир Клавдиевич
RU2575802C1

Иллюстрации к изобретению RU 2 072 537 C1

Реферат патента 1997 года СПОСОБ ЧАСТОТНО-ДИСТАНЦИОННЫХ ЗОНДИРОВАНИЙ

Использование: при проведении геоэлектроразведки. Сущность изобретения: возбуждают переменное магнитное поле вертикальным магнитным диполем, измеряют на ряде частот отношения большой и малой осей эллипса поляризации магнитного поля Нa/Hb, измеряют расстояние между точками возбуждения и точками наблюдения, для которых отношение Нa/Hb равно постоянной величине С на каждой рабочей частоте и по измеренным расстояниям (ri), частоте (fi) и постоянной С находят электромагнитный параметр поля Р и по нему и параметрам установки (ri, fi) определяют геоэлектрический разрез исследуемого участка. 3 ил.

Формула изобретения RU 2 072 537 C1

Способ частотно-дистанционных зондирований, заключающийся в возбуждении переменного магнитного поля вертикальным магнитным диполем и измерении отношения большой и малой осей эллипса поляризации магнитного поля Ha/Hb при одновременном изменении расстояния до точки измерения и рабочей частоты тока, отличающийся тем, что в нем при каждой рабочей частоте fi находят точку на профиле с постоянным отношением Ha/Hb С, измеряют расстояния ri от найденных точек до возбудителя поля, по величине С находят электромагнитный параметр поля P и по параметрам установки fi, ri и величине Р определяют геоэлектрический разрез.

Документы, цитированные в отчете о поиске Патент 1997 года RU2072537C1

Светов В.С., Мизюк Л.Я., Поджарый В.М
- Рудная электроразведка по методике эллиптически поляризованного поля М., Недра, 1969, с.116-118
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Гасаненко Л.Б
- Изопараметрическое зондирование
Вопросы геофизики, ЛГУ, вып
II, 1959, с.185-189.

RU 2 072 537 C1

Авторы

Титлинов В.С.

Человечков А.И.

Журавлева Р.Б.

Колесняк С.А.

Даты

1997-01-27Публикация

1993-04-20Подача