ИНДУКТИВНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВАРИАЦИЙ ЭЛЕКТРОСОПРОТИВЛЕНИЯ ГЕОЛОГИЧЕСКОЙ СРЕДЫ Российский патент 1997 года по МПК G01V3/10 

Описание патента на изобретение RU2093862C1

Предполагаемое изобретение относится к наземным электромагнитным методам исследования вещества и структур верхней части земной коры в диапазоне частот 30-1000 Гц. Оно может быть использовано при изучении процессов современной геодинамики, при которых изменяется во времени электросопротивление горных массивов. Область преимущественного применения предлагаемого технического решения наблюдение и изучение изменений электросопротивления геологической среды с периодом 1-15 суток в особенности на территориях, закрытых ледниками, многолетнемерзлыми, скальными и сыпучими грунтами.

Известен электромагнитный способ определения изменения во времени электрического сопротивления горных массивов, основанный на пропускании электрического тока между двумя заземлениями и измерении разности потенциалов между двумя заземлениями приемными электродами [1]
Этот способ имеет существенный недостаток, заключающий в сложности создания хороших заземлений в условиях скальных, мерзлых и сыпучих грунтов. Поэтому при изучении вариации электросопротивления геологической среды электрометрический способ применяют лишь в условиях стационарных геофизических обсерваторий. Указанный недостаток преодолевается с применением индуктивного способа возбуждения и приема геосигнала.

Известен индуктивный способ определения электросопротивления ρк геологической среды с возбуждающим вертикальным магнитным диполем и определением при малых параметрах поля малой оси эллипса поляризации магнитного поля, в котором измеряют при звуковых частотах напряжение на выходе приемной рамки при установке ее в вертикальной плоскости по минимуму выходного сигнала [2]
Достоинство этого способа возможность выполнять измерения без перемещения возбуждающего диполя в любом азимуте от него, в том числе по двум взаимно перпендикулярным радиусам-лучам, что дает возможность характеризовать анизотропию геологической среды в горизонтальной плоскости.

Недостаток этого способа низкая точность определения ρк вследствие его малой чувствительности к изменению электросопротивления исследуемой среды. Известно, что напряженность магнитного поля, соответствующего малой оси эллипса поляризации, в лучшем случае пропорциональна 1/ρк. Так как погрешность измерения малой оси эллипса в способе [2] обычно превосходит 3-5% то с такой же погрешностью определяется и ρк. Указанная точность приемлема в решении задач, обычных для геоэлектроразведки, где данный способ и применяется. Но такая точность (3-5%) совершенно недостаточна для наблюдений вариаций ρк во времени, поскольку такие изменения могут быть значительно меньше 1% Более высокая чувствительность и точность определения ρк достигаются с применением компенсационных способов измерений, в которых большая часть исследуемого поля, пропорционального 1/ ρк, компенсируется полем, пропорциональным первичному полю источника, и измеряется лишь нескомпенсированный остаток поля.

Известен компенсационный индуктивный способ определения электросопротивления геологической среды, в котором выходной сигнал приемной рамки компенсируется опорным напряжением до величины, меньшей порога чувствительности применяемого измерителя напряжений, выполняющего функции индикатора нуля. В компенсационном способе, принятом нами за прототип [3] опорное напряжение снимается с вторичной обмотки трансформатора, первичная обмотка которого включена последовательно в цепь генераторной рамки, и вместе с измеряемым напряжением подается на компенсационный мост, содержащий переменный аттенюатор и фазовращатель; по показанию этих устройств в момент полной компенсации, определяемой по нуль-индикатору, находится электросопротивление ρк изучаемой среды.

Недостаток этого компенсационного способа связан с тем, что для передачи опорного напряжения от трансформатора к компенсационному мосту используется проводная линия связи. Ее распределенная электроемкость, емкость относительно земли и потери на излучение могут создавать трудно контролируемые помехи, снижающие точность измерений. Поэтому способ-прототип применяется лишь в варианте с соцентричными, свободно лежащими на земной поверхности генераторной и приемной рамками либо при аэроэлектроразведке в односамолетном варианте, т.к. в обоих вариантах можно обойтись линией связи наименьшей длины (несколько метров) и помехами от нее можно пренебречь.

Аэроэлектроразведочная система из-за навигационных ошибок неприменима для высокоточных наблюдений за изменением ρк земли во времени; наземная же компенсационная система с совмещенными (соцентричными) приемно-генераторными рамками, обладая целым рядом достоинств, имеет и существенный недостаток. Реальные изменения электросопротивления могут происходить, например, по горизонтальным осям тензора электропроводности. Для наблюдения таких изменений ρк необходима система с разнесенными по земной поверхности источником и приемником поля.

Цель предполагаемого изобретения повышение чувствительности и точности измерений временных вариаций электросопротивления геологической среды с использованием разнесенных по поверхности земли горизонтальной генераторной и вертикальной приемных рамок.

Поставленная цель достигается тем, что в способе определения электросопротивления геологической среды, основанном на возбуждении в земле электрических токов вертикальным гармоническим магнитным диполем и измерении малой оси эллипса поляризации магнитного поля, дополнительно используется соосная с приемной рамкой компенсационная рамка, ток в которой формируют пропорциональным вертикальной составляющей магнитного поля, изменяют силу компенсирующего тока до полной компенсации малой оси эллипса поляризации и по величине приращения компенсирующего тока во времени определяют вариацию электросопротивления геологической среды.

На фиг. 1 приведена схема измерительной установки, реализующей предлагаемый способ. Установка (фиг. 1) содержит горизонтальную генераторную рамку вертикальный магнитный диполь М; приемную рамку 1, находящуюся в положении, близком к вертикальному; компенсационную рамку, имеющую горизонтальное звено 2, соцентричное с приемной рамкой, и звено 3, соосное с приемной рамкой (звено 3 практически выполнено из привода, намотанного по периметру приемной рамки, что обеспечивает сильное и жесткое потокосцепление между ними); калиброванный резистор 4; выключатель 5, разрывающий цепь компенсационной рамки отключением звена 2 от звена 3; переключатель 6 полярности соединения звеньев 2 и 3 (переключает направление компенсирующего тока в звене 3); нуль-индикатор 7 с регулируемой чувствительностью. Приемная рамка снабжена также штативом (на фиг. 1 не показан), удерживающим ее в положении, близком к вертикальному, и снабженным поворотным устройством для плавного изменения угла наклона в вертикальной плоскости.

Сущность реализуемого схемой фиг.1 компенсационного способа состоит в следующем. В горизонтальном звене 2 компенсационной рамки под действием вертикального магнитного поля Hz возникает электроток, который, протекая по звену 3, создает в центре приемной рамки добавочное магнитное поле Hк, направленное противоположно исследуемому полю . Изменяя резистором 4 величину компенсирующего тока, можно по минимуму выходного сигнала приемной рамки добиться равенства синфазных составляющих полей Hв и Hк. Оставшуюся часть поля Hв, находящуюся в квадратуре с Hк, компенсируют частью поля Hz, непосредственно воздействующей на приемную рамку и численно равной ΔHz = Hzsinα где α угол между вертикальной осью Z и плоскостью приемной рамки.

Работа по предлагаемому способу выполняется в следующей последовательности.

1. Вначале переключателем 5 разрывают цепь компенсационной рамки и на выбранной рабочей частоте, изменяя наклон приемной рамки, устанавливают ее в положение минимума выходного сигнала (Uвых).

2. Действуя переключателями 5 и 6, подключают звено 2 к звену 3 компенсационной рамки в такой последовательности, чтобы Uвых уменьшилось.

3. Изменяя величину резистора 4 и увеличивая чувствительность индикатора 7, добиваются нового, более глубокого, минимума Uвых.

4. Остаточный сигнал компенсируют изменением наклона приемной рамки.

5. Операции 3 и 4 повторяют до тех пор, пока при нулевых показаниях индикатора 7 не будет исчерпан весь запас его чувствительности.

При достижении полной компенсации снимают показания калиброванного резистора 4 и их считают мерой электросопротивления исследуемой геологической среды. Объясняется это следующим образом. При достижении максимальной компенсации напряжение на выходе приемной рамки представимо в виде
,
где напряжение в приемной рамке, возникающее под действием поля Hв;
напряжение в приемной рамке, возникающее под действием вертикальной составляющей поля генераторного диполя;
напряжение в приемной рамке, возникающее за счет взаимоиндукции приемной рамки и звена 3 компенсационной рамки.

Перечисленные напряжения, как и поля Hв и Hz, в общем случае являются комплексными величинами, но в области малых параметров поля (при низких частотах) они выражаются в виде

где μo = 4π•10-7 Гн/м магнитная постоянная;
ω = 2πf круговая частота поля;
r расстояние между центрами генераторной и приемной рамок;
Sn произведение площади на число витков приемной рамки;
S3 площадь горизонтального звена 2 компенсационной рамки;
M(1-2) коэффициент взаимной индукции приемной рамки и звена компенсационной рамки;
R числовое значение сопротивления резистора 4;
Lк полная индуктивность компенсирующей рамки;
Mи магнитный момент генераторной рамки.

В выражениях (2) (4) учтено, что при малых параметрах напряженность поля малой оси численно равна горизонтальной составляющей поля Hr, а вертикальная составляющая Hz равна первичному полю генераторного диполя, т.е.

.

По условию компенсации (1), приравнивая реальные части выражения (2) и (4), получаем окончательно

Из выражения (5) видно, что величина сопротивления R переменного резистора 4 действительно является мерой электросопротивления исследуемой среды. Из формулы (5) следует также, что, подбирая площадь S3 горизонтальной секции 2 компенсационной рамки и меняя коэффициент M(1-2) взаимной индукции подбором числа витков компенсирующей секции 3, можно добиться, чтобы на избранной рабочей частоте числовое значение R (в омах) было равно числу ρк (в омметрах), определенному в том же самом пункте по измерениям малой оси эллипса поляризации обычным способом или другим аналогичным методом. Тогда изменение R во времени будет и численно равно изменению ρк.

Повышение чувствительности к изменению ρ в предлагаемом способе достигается за счет того, при выполнении условия (1) приращение сигнала раскомпенсации Deo, вызываемое приращением Δρ, значительно больше, чем приращение поля Hr, вызванное тем же самым приращением Dr. Так, при экспериментальной проверке способа изменение rк(R) на 1% создавало изменение εo более чем на 10% и более. При непосредственном же измерении малой оси приращения Δ Hr примерно равно 1/Δρ.

Достоинством предлагаемого способа является также и то, что при сохранении неизменной во времени геометрии приемно-генераторной установки точность определения Dr зависит только от точности калибровки сопротивления R, регулирующего величину компенсирующего тока. Повышенная точность достигается при применении прецизионных магазинов сопротивлений.

Проверка предлагаемого способа выполнена в районе г. Красноуральска Свердловской области при режимных наблюдениях rк в июле-августе 1983 г. Источником поля была проволочная петля размером 250х250 м, питаемая переменным током в диапазоне частот 30-1000 Гц от генгруппы электроразведочной станции ЭРС-67. Пункт измерения находился на расстоянии 500 м от центра генераторной петли в специальном шурфе, защищенном от действия ветра, солнца и осадков. Использовали приемную рамку Hr и измеритель сигналов аппаратуры частотного зондирования АЧЗ-78. Горизонтальное звено компенсационной рамки имело размеры 50х50 м; в качестве резистора R использовался магазин сопротивлений типа Р-33.

Наблюдения выполняли в интервале 21-22 ч местного времени ежедневно с 7 июля по 12 августа. Результаты наблюдений приведены на фиг. 2. На ней индексами 1 3 обозначены:
1 средние значения [R] [ρк] в течение ежедневного наблюдательного часа;
2 осредненный график изменения ρк за весь период наблюдения с 7 июля по 12 августа;
3 график изменения силы тяжести Δg на меридиане нашего эксперимента в 21 ч местного времени по данным обсерватории "Обнинск".

Из фиг.2 видно, что по большинству измерений ежесуточная величина ρк меняется в пределах 1420-1470 Ом. В трех случаях 20, 28 июля и 10 августа - прошли сильные грозовые дожди, чем, вероятно, и объясняются резкие глубокие минимумы ρк в эти дни. Если исключить эти аномальные точки, то, как видно по графику 2, хорошо выделяется гармоническая составляющая вариации ρк с периодом, равным 14-15 сут. Максимальная относительная амплитуда этой вариации составляет
.

Из сравнения графиков 2 и 3 на фиг. 2 видно, что гармоническая составляющая вариации ρк коррелирует с аналогичным изменением силы тяжести в том же интервале и с тем же периодом Т 15 сут. Это является косвенным подтверждением правильности определения ρк по предлагаемому способу, а с другой стороны, позволяет объяснить гармоническую составляющую вариации ρк периодическими деформациями земной коры под действием приливных сил Луны и Солнца.

Отметим, что параллельно с опробованием предлагаемого способа в том же самом пункте и с той же самой аппаратурой АЧЗ-78 выполнялись определения ρк путем измерения модуля вертикального импеданса. В пределах достигнутой точности измерения импеданса, равной 1-1,5% гармонических вариаций не зарегистрировано. Таким образом, предлагаемый компенсационный способ определения вариации ρк является чувствительным по сравнению с импедансным.

Похожие патенты RU2093862C1

название год авторы номер документа
ИНДУКТИВНЫЙ СПОСОБ ЭЛЕКТРОМАГНИТНОГО МОНИТОРИНГА ПРОЦЕССА ОТТАЙКИ ГРУНТА 1997
  • Титлинов В.С.
  • Человечков А.И.
  • Астафьев П.Ф.
  • Вишнев В.С.
RU2156986C2
СПОСОБ ЧАСТОТНО-ДИСТАНЦИОННЫХ ЗОНДИРОВАНИЙ 1993
  • Титлинов В.С.
  • Человечков А.И.
  • Журавлева Р.Б.
  • Колесняк С.А.
RU2072537C1
СПОСОБ ИЗМЕРЕНИЙ ПРИ ДИСТАНЦИОННО-ЧАСТОТНОМ ЗОНДИРОВАНИИ С ВОЗБУЖДАЮЩИМ ВЕРТИКАЛЬНЫМ МАГНИТНЫМ ДИПОЛЕМ 1995
  • Титлинов В.С.
  • Журавлева Р.Б.
RU2098846C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 1996
  • Бобровников Н.В.
RU2107932C1
СПОСОБ ТЕХНОГЕННОГО ЭЛЕКТРИЧЕСКОГО ЗАРЯДА 1996
  • Бобровников Н.В.
RU2105329C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 1994
  • Кормильцев В.В.
  • Улитин Р.В.
  • Человечков А.И.
RU2090909C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 1994
  • Кормильцев В.В.
  • Улитин Р.В.
  • Человечков А.И.
RU2098847C1
СПОСОБ ИНДУКЦИОННОГО ВЕРТИКАЛЬНОГО ЗОНДИРОВАНИЯ 1998
  • Человечков А.И.
  • Чистосердов Б.М.
RU2156987C2
УСТРОЙСТВО ДЛЯ ГЕОЭЛЕКТРОРАЗВЕДКИ 1998
  • Человечков А.И.
RU2158940C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Астраханцев Г.В.
  • Астраханцев Ю.Г.
  • Улитин Р.В.
  • Мингазов Марс
RU2179325C2

Иллюстрации к изобретению RU 2 093 862 C1

Реферат патента 1997 года ИНДУКТИВНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВАРИАЦИЙ ЭЛЕКТРОСОПРОТИВЛЕНИЯ ГЕОЛОГИЧЕСКОЙ СРЕДЫ

Использование: при электромагнитных методах исследования земли, для изучения вариаций электросопротивления земли при неэлектропроводном поверхностном слое (мерзлота, скальный грунт и т.п.). Сущность изобретения: после установки приемной рамки в положение, соответствующее регистрации малой оси эллипса поляризации, дополнительно используют соосную с приемной компенсирующую рамку, ток с которой формируют пропорциональным вертикальной составляющей магнитного поля, изменяют силу компенсирующего тока до величины, при которой достигается максимальная компенсация малой оси эллипса поляризации, и по величине изменения компенсирующего тока определяют вариацию электросопротивления геологической среды. 2 ил.

Формула изобретения RU 2 093 862 C1

Индуктивный способ определения вариаций электросопротивления геологической среды, основанный на возбуждении в земле электрических токов вертикальным гармоническим магнитным диполем и измерении малой оси эллипса поляризации магнитного поля, отличающийся тем, что в нем дополнительно используется соосная с приемной рамкой компенсационная рамка, ток в которой формируют пропорциональным вертикальной составляющей магнитного поля, изменяют силу компенсирующего тока до полной компенсации малой оси эллипса поляризации и по величине приращения компенсирующего тока во времени определяют вариацию электросопротивления геологической среды.

Документы, цитированные в отчете о поиске Патент 1997 года RU2093862C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Барсуков О.М
Явление изменения удельного электрического сопротивления горных массивов перед местным землетрясением, открытие
Приспособление для подвешивания тележки при подъемках сошедших с рельс вагонов 1920
  • Немчинов А.А.
SU216A1
- ОИПОТЗ, 1979, N 43, с.3
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ ориентации измерительной рамки в индукционных методах электрической разведки 1960
  • Якубовский Ю.В.
SU133537A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Бездверный А.Г
Частотное зондирование по способу компенсации при поисках подземных вод в слоистых средах, теория и практика электромагнитных методов исследования вещества и структур Земли
- Свердловск, УНЦ АН СССР, 1985, с.49-55.

RU 2 093 862 C1

Авторы

Титлинов В.С.

Улитин Р.В.

Человечков А.И.

Даты

1997-10-20Публикация

1995-03-06Подача